{"title":"Dilp8-Lgr3通路的生物学和进化:一种耦合组织生长和发育时间控制的松弛素样通路","authors":"Alisson M. Gontijo , Andres Garelli","doi":"10.1016/j.mod.2018.04.005","DOIUrl":null,"url":null,"abstract":"<div><p>Many insects, like cockroaches, moths, and flies, can regenerate tissues by extending the growth-competent phases of their life cycle. The molecular and cellular players mediating this coordination between tissue growth and developmental timing have been recently discovered in <em>Drosophila</em>. The insulin/relaxin-like peptide, Dilp8, was identified as a factor communicating abnormal growth status of <em>Drosophila</em> larval imaginal discs to the neuroendocrine centers that control the timing of the onset of metamorphosis. Dilp8 requires a neuronal relaxin receptor for this function, the Leucine rich repeat containing G protein coupled receptor, Lgr3. A review of current data supports a model where imaginal disc-derived Dilp8 acts on four central nervous system Lgr3-positive neurons to activate cyclic-AMP signaling in an Lgr3-dependent manner. This causes a reduction in ecdysone hormone production by the larval endocrine prothoracic gland, which leads to a delay in the onset of metamorphosis and a simultaneous slowing down in the growth rates of healthy imaginal tissues, promoting the generation of proportionate individuals. We discuss reports indicating that the Dilp8-Lgr3 pathway might have other functions at different life history stages, which remain to be elucidated, and review molecular evolution data on invertebrate genes related to the relaxin-pathway. The strong conservation of the relaxin pathway throughout animal evolution contrasts with instances of its complete loss in some clades, such as lepidopterans, which must coordinate growth and developmental timing using another mechanism. Research into these areas should generate exciting new insights into the biology of growth coordination, the evolution of the relaxin signaling pathway, and likely reveal unforeseen functions in other developmental stages.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"154 ","pages":"Pages 44-50"},"PeriodicalIF":2.6000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2018.04.005","citationCount":"44","resultStr":"{\"title\":\"The biology and evolution of the Dilp8-Lgr3 pathway: A relaxin-like pathway coupling tissue growth and developmental timing control\",\"authors\":\"Alisson M. Gontijo , Andres Garelli\",\"doi\":\"10.1016/j.mod.2018.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many insects, like cockroaches, moths, and flies, can regenerate tissues by extending the growth-competent phases of their life cycle. The molecular and cellular players mediating this coordination between tissue growth and developmental timing have been recently discovered in <em>Drosophila</em>. The insulin/relaxin-like peptide, Dilp8, was identified as a factor communicating abnormal growth status of <em>Drosophila</em> larval imaginal discs to the neuroendocrine centers that control the timing of the onset of metamorphosis. Dilp8 requires a neuronal relaxin receptor for this function, the Leucine rich repeat containing G protein coupled receptor, Lgr3. A review of current data supports a model where imaginal disc-derived Dilp8 acts on four central nervous system Lgr3-positive neurons to activate cyclic-AMP signaling in an Lgr3-dependent manner. This causes a reduction in ecdysone hormone production by the larval endocrine prothoracic gland, which leads to a delay in the onset of metamorphosis and a simultaneous slowing down in the growth rates of healthy imaginal tissues, promoting the generation of proportionate individuals. We discuss reports indicating that the Dilp8-Lgr3 pathway might have other functions at different life history stages, which remain to be elucidated, and review molecular evolution data on invertebrate genes related to the relaxin-pathway. The strong conservation of the relaxin pathway throughout animal evolution contrasts with instances of its complete loss in some clades, such as lepidopterans, which must coordinate growth and developmental timing using another mechanism. Research into these areas should generate exciting new insights into the biology of growth coordination, the evolution of the relaxin signaling pathway, and likely reveal unforeseen functions in other developmental stages.</p></div>\",\"PeriodicalId\":49844,\"journal\":{\"name\":\"Mechanisms of Development\",\"volume\":\"154 \",\"pages\":\"Pages 44-50\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mod.2018.04.005\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanisms of Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925477318300728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477318300728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
The biology and evolution of the Dilp8-Lgr3 pathway: A relaxin-like pathway coupling tissue growth and developmental timing control
Many insects, like cockroaches, moths, and flies, can regenerate tissues by extending the growth-competent phases of their life cycle. The molecular and cellular players mediating this coordination between tissue growth and developmental timing have been recently discovered in Drosophila. The insulin/relaxin-like peptide, Dilp8, was identified as a factor communicating abnormal growth status of Drosophila larval imaginal discs to the neuroendocrine centers that control the timing of the onset of metamorphosis. Dilp8 requires a neuronal relaxin receptor for this function, the Leucine rich repeat containing G protein coupled receptor, Lgr3. A review of current data supports a model where imaginal disc-derived Dilp8 acts on four central nervous system Lgr3-positive neurons to activate cyclic-AMP signaling in an Lgr3-dependent manner. This causes a reduction in ecdysone hormone production by the larval endocrine prothoracic gland, which leads to a delay in the onset of metamorphosis and a simultaneous slowing down in the growth rates of healthy imaginal tissues, promoting the generation of proportionate individuals. We discuss reports indicating that the Dilp8-Lgr3 pathway might have other functions at different life history stages, which remain to be elucidated, and review molecular evolution data on invertebrate genes related to the relaxin-pathway. The strong conservation of the relaxin pathway throughout animal evolution contrasts with instances of its complete loss in some clades, such as lepidopterans, which must coordinate growth and developmental timing using another mechanism. Research into these areas should generate exciting new insights into the biology of growth coordination, the evolution of the relaxin signaling pathway, and likely reveal unforeseen functions in other developmental stages.
期刊介绍:
Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology.
Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology.
Areas of particular interest include:
Cell and tissue morphogenesis
Cell adhesion and migration
Cell shape and polarity
Biomechanics
Theoretical modelling of cell and developmental biology
Quantitative biology
Stem cell biology
Cell differentiation
Cell proliferation and cell death
Evo-Devo
Membrane traffic
Metabolic regulation
Organ and organoid development
Regeneration
Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.