Racheal S. Dube Mandishora , Kristina S. Gjøtterud , Sonja Lagström , Babill Stray-Pedersen , Kerina Duri , Nyasha Chin'ombe , Mari Nygård , Irene Kraus Christiansen , Ole Herman Ambur , Mike Z. Chirenje , Trine B. Rounge
{"title":"人乳头瘤病毒宿主内序列变异","authors":"Racheal S. Dube Mandishora , Kristina S. Gjøtterud , Sonja Lagström , Babill Stray-Pedersen , Kerina Duri , Nyasha Chin'ombe , Mari Nygård , Irene Kraus Christiansen , Ole Herman Ambur , Mike Z. Chirenje , Trine B. Rounge","doi":"10.1016/j.pvr.2018.04.006","DOIUrl":null,"url":null,"abstract":"<div><p>Human papillomaviruses (HPVs) co-evolve slowly with the human host and each HPV genotype displays epithelial tropisms. We assessed the evolution of <em>intra</em> HPV genotype variants within samples, and their association to anogenital site, cervical cytology and HIV status. Variability in the <em>L1</em> gene of 35 HPV genotypes was characterized phylogenetically using maximum likelihood, and portrayed by phenotype. Up to a thousand unique variants were identified within individual samples. In-depth analyses of the most prevalent genotypes, HPV16, HPV18 and HPV52, revealed that the high diversity was dominated by a few abundant variants. This suggests high intra-host mutation rates. Clades of HPV16, HPV18 and HPV52 were associated to anatomical site and HIV co-infection. Particularly, we observed that one HPV16 clade was specific to vaginal cells and one HPV52 clade was specific to anal cells. One major HPV52 clade, present in several samples, was strongly associated with cervical neoplasia. Overall, our data suggest that tissue tropism and HIV immunosuppression are strong shapers of HPV evolution.</p></div>","PeriodicalId":46835,"journal":{"name":"Papillomavirus Research","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pvr.2018.04.006","citationCount":"27","resultStr":"{\"title\":\"Intra-host sequence variability in human papillomavirus\",\"authors\":\"Racheal S. Dube Mandishora , Kristina S. Gjøtterud , Sonja Lagström , Babill Stray-Pedersen , Kerina Duri , Nyasha Chin'ombe , Mari Nygård , Irene Kraus Christiansen , Ole Herman Ambur , Mike Z. Chirenje , Trine B. Rounge\",\"doi\":\"10.1016/j.pvr.2018.04.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Human papillomaviruses (HPVs) co-evolve slowly with the human host and each HPV genotype displays epithelial tropisms. We assessed the evolution of <em>intra</em> HPV genotype variants within samples, and their association to anogenital site, cervical cytology and HIV status. Variability in the <em>L1</em> gene of 35 HPV genotypes was characterized phylogenetically using maximum likelihood, and portrayed by phenotype. Up to a thousand unique variants were identified within individual samples. In-depth analyses of the most prevalent genotypes, HPV16, HPV18 and HPV52, revealed that the high diversity was dominated by a few abundant variants. This suggests high intra-host mutation rates. Clades of HPV16, HPV18 and HPV52 were associated to anatomical site and HIV co-infection. Particularly, we observed that one HPV16 clade was specific to vaginal cells and one HPV52 clade was specific to anal cells. One major HPV52 clade, present in several samples, was strongly associated with cervical neoplasia. Overall, our data suggest that tissue tropism and HIV immunosuppression are strong shapers of HPV evolution.</p></div>\",\"PeriodicalId\":46835,\"journal\":{\"name\":\"Papillomavirus Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.pvr.2018.04.006\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Papillomavirus Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405852117300678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papillomavirus Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405852117300678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intra-host sequence variability in human papillomavirus
Human papillomaviruses (HPVs) co-evolve slowly with the human host and each HPV genotype displays epithelial tropisms. We assessed the evolution of intra HPV genotype variants within samples, and their association to anogenital site, cervical cytology and HIV status. Variability in the L1 gene of 35 HPV genotypes was characterized phylogenetically using maximum likelihood, and portrayed by phenotype. Up to a thousand unique variants were identified within individual samples. In-depth analyses of the most prevalent genotypes, HPV16, HPV18 and HPV52, revealed that the high diversity was dominated by a few abundant variants. This suggests high intra-host mutation rates. Clades of HPV16, HPV18 and HPV52 were associated to anatomical site and HIV co-infection. Particularly, we observed that one HPV16 clade was specific to vaginal cells and one HPV52 clade was specific to anal cells. One major HPV52 clade, present in several samples, was strongly associated with cervical neoplasia. Overall, our data suggest that tissue tropism and HIV immunosuppression are strong shapers of HPV evolution.
期刊介绍:
The official Journal of the International Papillomavirus Society Papillomavirus Research (PVR), the Journal of HPV and other Small DNA Tumor Viruses publishes innovative papers related to all aspects of papillomaviruses and other small DNA tumor viruses. The official journal of the International Papillomavirus Society, PVR is an open access publication that aims to bring together virologists, immunologists, epidemiologists and clinicians working in the booming field of HPV and animal papillomaviruses, polyomaviruses and other small DNA tumor viruses and their associated diseases, in order to foster and facilitate interdisciplinary communication. The journal welcomes original research articles, reviews, short communications, opinion articles and regional update reports on papillomaviruses and other tumor viruses in the following sections: a. Biology of papillomaviruses and related viruses from life cycle to cancer b. Epidemiology etiology and natural history studies c. Natural and induced immunity including vaccine research d. Intervention studies and strategies including i. Clinical studies and trials ii. HPV treatments iii. HPV vaccination programs iv. Diagnostics and screening e. Infection and disease prevention, modeling studies f. Guidelines and public health recommendations g. HPV Studies in special populations Regional and local studies on these viruses.