Amir Abbas Momtazi-Borojeni, Jafar Mosafer, Banafsheh Nikfar, Mahnaz Ekhlasi-Hundrieser, Shahla Chaichian, Abolfazl Mehdizadehkashi, Atefeh Vaezi
{"title":"姜黄素在治疗具有药物和放疗相关耐药的妇科癌症中的作用。","authors":"Amir Abbas Momtazi-Borojeni, Jafar Mosafer, Banafsheh Nikfar, Mahnaz Ekhlasi-Hundrieser, Shahla Chaichian, Abolfazl Mehdizadehkashi, Atefeh Vaezi","doi":"10.1007/112_2018_11","DOIUrl":null,"url":null,"abstract":"<p><p>The development of resistance toward current cancer therapy modalities is an ongoing challenge in gynecological cancers, especially ovarian and cervical malignancies that require further investigations in the context of drug- and irradiation-induced resistance. In this regard, curcumin has demonstrated beneficial and highly pleiotropic actions and increased the therapeutic efficiency of radiochemotherapy. The antiproliferative, anti-metastatic, anti-angiogenic, and anti-inflammatory effects of curcumin have been extensively reported in the literature, and it could also act as a chemopreventive agent which mitigates the out-of-target harmful impact of chemotherapeutics on surrounding normal tissues. The current review discussed the modulating influences of curcumin on some cell and molecular features, including the cell signaling and molecular pathways altered upon curcumin treatment, the expression of target genes involved in the progression of gynecological cancers, as well as the expression of genes accountable for the development of resistance toward common chemotherapeutics and radiotherapy. The cell molecular targets implicated in curcumin's resensitizing effect, when used together with cisplatin, paclitaxel, and irradiation in gynecological cancers, are also addressed. Finally, rational approaches for improving the therapeutic benefits of curcumin, including curcumin derivatives with enhanced therapeutic efficacy, using nanoformulations to advance curcumin stability in physiological media and improve bioavailability have been elucidated.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":"176 ","pages":"107-129"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2018_11","citationCount":"18","resultStr":"{\"title\":\"Curcumin in Advancing Treatment for Gynecological Cancers with Developed Drug- and Radiotherapy-Associated Resistance.\",\"authors\":\"Amir Abbas Momtazi-Borojeni, Jafar Mosafer, Banafsheh Nikfar, Mahnaz Ekhlasi-Hundrieser, Shahla Chaichian, Abolfazl Mehdizadehkashi, Atefeh Vaezi\",\"doi\":\"10.1007/112_2018_11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of resistance toward current cancer therapy modalities is an ongoing challenge in gynecological cancers, especially ovarian and cervical malignancies that require further investigations in the context of drug- and irradiation-induced resistance. In this regard, curcumin has demonstrated beneficial and highly pleiotropic actions and increased the therapeutic efficiency of radiochemotherapy. The antiproliferative, anti-metastatic, anti-angiogenic, and anti-inflammatory effects of curcumin have been extensively reported in the literature, and it could also act as a chemopreventive agent which mitigates the out-of-target harmful impact of chemotherapeutics on surrounding normal tissues. The current review discussed the modulating influences of curcumin on some cell and molecular features, including the cell signaling and molecular pathways altered upon curcumin treatment, the expression of target genes involved in the progression of gynecological cancers, as well as the expression of genes accountable for the development of resistance toward common chemotherapeutics and radiotherapy. The cell molecular targets implicated in curcumin's resensitizing effect, when used together with cisplatin, paclitaxel, and irradiation in gynecological cancers, are also addressed. Finally, rational approaches for improving the therapeutic benefits of curcumin, including curcumin derivatives with enhanced therapeutic efficacy, using nanoformulations to advance curcumin stability in physiological media and improve bioavailability have been elucidated.</p>\",\"PeriodicalId\":21169,\"journal\":{\"name\":\"Reviews of Physiology Biochemistry and Pharmacology\",\"volume\":\"176 \",\"pages\":\"107-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/112_2018_11\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Physiology Biochemistry and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/112_2018_11\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Physiology Biochemistry and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/112_2018_11","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Curcumin in Advancing Treatment for Gynecological Cancers with Developed Drug- and Radiotherapy-Associated Resistance.
The development of resistance toward current cancer therapy modalities is an ongoing challenge in gynecological cancers, especially ovarian and cervical malignancies that require further investigations in the context of drug- and irradiation-induced resistance. In this regard, curcumin has demonstrated beneficial and highly pleiotropic actions and increased the therapeutic efficiency of radiochemotherapy. The antiproliferative, anti-metastatic, anti-angiogenic, and anti-inflammatory effects of curcumin have been extensively reported in the literature, and it could also act as a chemopreventive agent which mitigates the out-of-target harmful impact of chemotherapeutics on surrounding normal tissues. The current review discussed the modulating influences of curcumin on some cell and molecular features, including the cell signaling and molecular pathways altered upon curcumin treatment, the expression of target genes involved in the progression of gynecological cancers, as well as the expression of genes accountable for the development of resistance toward common chemotherapeutics and radiotherapy. The cell molecular targets implicated in curcumin's resensitizing effect, when used together with cisplatin, paclitaxel, and irradiation in gynecological cancers, are also addressed. Finally, rational approaches for improving the therapeutic benefits of curcumin, including curcumin derivatives with enhanced therapeutic efficacy, using nanoformulations to advance curcumin stability in physiological media and improve bioavailability have been elucidated.
期刊介绍:
The highly successful Reviews of Physiology, Biochemistry and Pharmacology continue to offer high-quality, in-depth reviews covering the full range of modern physiology, biochemistry and pharmacology. Leading researchers are specially invited to provide a complete understanding of the key topics in these archetypal multidisciplinary fields. In a form immediately useful to scientists, this periodical aims to filter, highlight and review the latest developments in these rapidly advancing fields.