Nan Chen, Jing Zhu, Meixia Ye, Yi Jin, Xiaoqing He, Rongling Wu
{"title":"[通过全基因组关联分析确定大肠杆菌和金黄色葡萄球菌之间的相互作用]。","authors":"Nan Chen, Jing Zhu, Meixia Ye, Yi Jin, Xiaoqing He, Rongling Wu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>We studied the interactions in a co-culture of two bacteria.</p><p><strong>Methods: </strong>By pairwise co-culturing of 36 Escherichia coli and 36 Staphylococcus aureus strains, we monitored the growth of each species in an interaction environment. We identified numerous Single Nucleotide Polymorphisms (SNPs) by whole-genome sequencing used as genetic markers to predict variations in phenotypic traits. Genome-wide association study (GWAS) was applied to identify loci that controlled competition between the two species.</p><p><strong>Results: </strong>In E. coli, 162 significant SNPs affected the change of maximum growth rate by comparing initials strains with those grown in co-culture, and 36 significant SNPs affected the change of maximum growth rate comparing monoculture and co-culture strains. Five of the significant E. coli genes we identified after annotation this time were also reported in other evolutionary studies. We also identified 85 significant SNPs in S. aureus that affected the change of maximum growth rate by comparing initial strains with those grown in monoculture. About the change of bacterial numbers, we found that 706 significant SNPs were associated in E. coli and 129 in S. aureus. Thirteen of the E. coli significant genes in this study were also verified in previous evolutionary reports</p><p><strong>Conclusion: </strong>We found several significant genes both in monoculture and co-culture affecting the interaction of E. coli and S. aureus. GWAS has the potential to study interspecific interactions of bacteria.</p>","PeriodicalId":7120,"journal":{"name":"微生物学报","volume":"57 4","pages":"526-38"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Interactions between Escherichia coli and Staphylococcus aureus determined by genome-wide association analysis].\",\"authors\":\"Nan Chen, Jing Zhu, Meixia Ye, Yi Jin, Xiaoqing He, Rongling Wu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>We studied the interactions in a co-culture of two bacteria.</p><p><strong>Methods: </strong>By pairwise co-culturing of 36 Escherichia coli and 36 Staphylococcus aureus strains, we monitored the growth of each species in an interaction environment. We identified numerous Single Nucleotide Polymorphisms (SNPs) by whole-genome sequencing used as genetic markers to predict variations in phenotypic traits. Genome-wide association study (GWAS) was applied to identify loci that controlled competition between the two species.</p><p><strong>Results: </strong>In E. coli, 162 significant SNPs affected the change of maximum growth rate by comparing initials strains with those grown in co-culture, and 36 significant SNPs affected the change of maximum growth rate comparing monoculture and co-culture strains. Five of the significant E. coli genes we identified after annotation this time were also reported in other evolutionary studies. We also identified 85 significant SNPs in S. aureus that affected the change of maximum growth rate by comparing initial strains with those grown in monoculture. About the change of bacterial numbers, we found that 706 significant SNPs were associated in E. coli and 129 in S. aureus. Thirteen of the E. coli significant genes in this study were also verified in previous evolutionary reports</p><p><strong>Conclusion: </strong>We found several significant genes both in monoculture and co-culture affecting the interaction of E. coli and S. aureus. GWAS has the potential to study interspecific interactions of bacteria.</p>\",\"PeriodicalId\":7120,\"journal\":{\"name\":\"微生物学报\",\"volume\":\"57 4\",\"pages\":\"526-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"微生物学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"微生物学报","FirstCategoryId":"1089","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
[Interactions between Escherichia coli and Staphylococcus aureus determined by genome-wide association analysis].
Objective: We studied the interactions in a co-culture of two bacteria.
Methods: By pairwise co-culturing of 36 Escherichia coli and 36 Staphylococcus aureus strains, we monitored the growth of each species in an interaction environment. We identified numerous Single Nucleotide Polymorphisms (SNPs) by whole-genome sequencing used as genetic markers to predict variations in phenotypic traits. Genome-wide association study (GWAS) was applied to identify loci that controlled competition between the two species.
Results: In E. coli, 162 significant SNPs affected the change of maximum growth rate by comparing initials strains with those grown in co-culture, and 36 significant SNPs affected the change of maximum growth rate comparing monoculture and co-culture strains. Five of the significant E. coli genes we identified after annotation this time were also reported in other evolutionary studies. We also identified 85 significant SNPs in S. aureus that affected the change of maximum growth rate by comparing initial strains with those grown in monoculture. About the change of bacterial numbers, we found that 706 significant SNPs were associated in E. coli and 129 in S. aureus. Thirteen of the E. coli significant genes in this study were also verified in previous evolutionary reports
Conclusion: We found several significant genes both in monoculture and co-culture affecting the interaction of E. coli and S. aureus. GWAS has the potential to study interspecific interactions of bacteria.
期刊介绍:
Acta Microbiologica Sinica(AMS) is a peer-reviewed monthly (one volume per year)international journal,founded in 1953.It covers a wide range of topics in the areas of general and applied microbiology.The journal
publishes original papers,reviews in microbiological science,and short communications describing unusual observations.
Acta Microbiologica Sinica has been indexed in Index Copernicus (IC),Chemical Abstract (CA),Excerpt Medica Database (EMBASE),AJ of Viniti (Russia),Biological Abstracts (BA),Chinese Science Citation Database
(CSCD),China National Knowledge Infrastructure(CNKI),Institute of Scientific and Technical Information of China(ISTIC),Chinese Journal Citation Report(CJCR),Chinese Biological Abstracts,Chinese Pharmaceutical
Abstracts,Chinese Medical Abstracts and Chinese Science Abstracts.