人类胎儿和婴儿白质发育的MRI和M/EEG研究:综述和观点。

Jessica Dubois, Parvaneh Adibpour, Cyril Poupon, Lucie Hertz-Pannier, Ghislaine Dehaene-Lambertz
{"title":"人类胎儿和婴儿白质发育的MRI和M/EEG研究:综述和观点。","authors":"Jessica Dubois,&nbsp;Parvaneh Adibpour,&nbsp;Cyril Poupon,&nbsp;Lucie Hertz-Pannier,&nbsp;Ghislaine Dehaene-Lambertz","doi":"10.3233/BPL-160031","DOIUrl":null,"url":null,"abstract":"<p><p>Already during the last trimester of gestation, functional responses are recorded in foetuses and preterm newborns, attesting an already complex cerebral architecture. Then throughout childhood, anatomical connections are further refined but at different rates and over asynchronous periods across functional networks. Concurrently, infants gradually achieve new psychomotor and cognitive skills. Only the recent use of non-invasive techniques such as magnetic resonance imaging (MRI) and magneto- and electroencephalography (M/EEG) has opened the possibility to understand the relationships between brain maturation and skills development <i>in vivo</i>. In this review, we describe how these techniques have been applied to study the white matter maturation. At the structural level, the early architecture and myelination of bundles have been assessed with diffusion and relaxometry MRI, recently integrated in multi-compartment models and multi-parametric approaches. Nevertheless, technical limitations prevent us to map major developmental mechanisms such as fibers growth and pruning, and the progressive maturation at the bundle scale in case of mixing trajectories. At the functional level, M/EEG have been used to record different visual, somatosensory and auditory evoked responses. Because the conduction velocity of neural impulses increases with the myelination of connections, major changes in the components latency are observed throughout development. But so far, only a few studies have related structural and functional markers of white matter myelination. Such multi-modal approaches will be a major challenge in future research, not only to understand normal development, but also to characterize early mechanisms of pathologies and the influence of fetal and perinatal interventions on later outcome.</p>","PeriodicalId":72451,"journal":{"name":"Brain plasticity (Amsterdam, Netherlands)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BPL-160031","citationCount":"28","resultStr":"{\"title\":\"MRI and M/EEG studies of the White Matter Development in Human Fetuses and Infants: Review and Opinion.\",\"authors\":\"Jessica Dubois,&nbsp;Parvaneh Adibpour,&nbsp;Cyril Poupon,&nbsp;Lucie Hertz-Pannier,&nbsp;Ghislaine Dehaene-Lambertz\",\"doi\":\"10.3233/BPL-160031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Already during the last trimester of gestation, functional responses are recorded in foetuses and preterm newborns, attesting an already complex cerebral architecture. Then throughout childhood, anatomical connections are further refined but at different rates and over asynchronous periods across functional networks. Concurrently, infants gradually achieve new psychomotor and cognitive skills. Only the recent use of non-invasive techniques such as magnetic resonance imaging (MRI) and magneto- and electroencephalography (M/EEG) has opened the possibility to understand the relationships between brain maturation and skills development <i>in vivo</i>. In this review, we describe how these techniques have been applied to study the white matter maturation. At the structural level, the early architecture and myelination of bundles have been assessed with diffusion and relaxometry MRI, recently integrated in multi-compartment models and multi-parametric approaches. Nevertheless, technical limitations prevent us to map major developmental mechanisms such as fibers growth and pruning, and the progressive maturation at the bundle scale in case of mixing trajectories. At the functional level, M/EEG have been used to record different visual, somatosensory and auditory evoked responses. Because the conduction velocity of neural impulses increases with the myelination of connections, major changes in the components latency are observed throughout development. But so far, only a few studies have related structural and functional markers of white matter myelination. Such multi-modal approaches will be a major challenge in future research, not only to understand normal development, but also to characterize early mechanisms of pathologies and the influence of fetal and perinatal interventions on later outcome.</p>\",\"PeriodicalId\":72451,\"journal\":{\"name\":\"Brain plasticity (Amsterdam, Netherlands)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/BPL-160031\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain plasticity (Amsterdam, Netherlands)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/BPL-160031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain plasticity (Amsterdam, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/BPL-160031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在妊娠的最后三个月,胎儿和早产新生儿的功能反应已经被记录下来,证明大脑结构已经很复杂。然后在整个儿童时期,解剖连接进一步完善,但在不同的速率和异步时期跨功能网络。同时,婴儿逐渐获得新的精神运动和认知技能。只有最近使用非侵入性技术,如磁共振成像(MRI)和脑磁图和脑电图(M/EEG),才有可能了解大脑成熟与体内技能发展之间的关系。在这篇综述中,我们描述了这些技术是如何应用于研究白质成熟的。在结构水平上,弥散和弛豫测量MRI评估了束的早期结构和髓鞘形成,最近将其整合到多室模型和多参数方法中。然而,由于技术上的限制,我们无法绘制出主要的发育机制,如纤维生长和修剪,以及在混合轨迹的情况下,束尺度上的逐渐成熟。在功能水平上,M/EEG记录了不同的视觉、体感和听觉诱发反应。由于神经冲动的传导速度随着连接的髓鞘形成而增加,因此在整个发育过程中观察到潜伏期成分的主要变化。但到目前为止,只有少数研究与白质髓鞘形成的结构和功能标志物有关。这种多模式方法将是未来研究的主要挑战,不仅要了解正常发育,而且要描述病理的早期机制以及胎儿和围产期干预对后期结果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MRI and M/EEG studies of the White Matter Development in Human Fetuses and Infants: Review and Opinion.

Already during the last trimester of gestation, functional responses are recorded in foetuses and preterm newborns, attesting an already complex cerebral architecture. Then throughout childhood, anatomical connections are further refined but at different rates and over asynchronous periods across functional networks. Concurrently, infants gradually achieve new psychomotor and cognitive skills. Only the recent use of non-invasive techniques such as magnetic resonance imaging (MRI) and magneto- and electroencephalography (M/EEG) has opened the possibility to understand the relationships between brain maturation and skills development in vivo. In this review, we describe how these techniques have been applied to study the white matter maturation. At the structural level, the early architecture and myelination of bundles have been assessed with diffusion and relaxometry MRI, recently integrated in multi-compartment models and multi-parametric approaches. Nevertheless, technical limitations prevent us to map major developmental mechanisms such as fibers growth and pruning, and the progressive maturation at the bundle scale in case of mixing trajectories. At the functional level, M/EEG have been used to record different visual, somatosensory and auditory evoked responses. Because the conduction velocity of neural impulses increases with the myelination of connections, major changes in the components latency are observed throughout development. But so far, only a few studies have related structural and functional markers of white matter myelination. Such multi-modal approaches will be a major challenge in future research, not only to understand normal development, but also to characterize early mechanisms of pathologies and the influence of fetal and perinatal interventions on later outcome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erratum to: Flavonoids as an Intervention for Alzheimer's Disease: Progress and Hurdles Towards Defining a Mechanism of Action. Maintaining a Dynamic Brain: A Review of Empirical Findings Describing the Roles of Exercise, Learning, and Environmental Enrichment in Neuroplasticity from 2017-2023. The Multifaceted Effects of Flavonoids on Neuroplasticity Nicotinamide Mononucleotide Prevents Cisplatin-Induced Mitochondrial Defects in Cortical Neurons Derived from Human Induced Pluripotent Stem Cells. Proceedings from the Albert Charitable Trust Inaugural Workshop on 'Understanding the Acute Effects of Exercise on the Brain'.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1