{"title":"求解大规模无约束优化问题和非线性方程的共轭梯度算法。","authors":"Gonglin Yuan, Wujie Hu","doi":"10.1186/s13660-018-1703-1","DOIUrl":null,"url":null,"abstract":"<p><p>For large-scale unconstrained optimization problems and nonlinear equations, we propose a new three-term conjugate gradient algorithm under the Yuan-Wei-Lu line search technique. It combines the steepest descent method with the famous conjugate gradient algorithm, which utilizes both the relevant function trait and the current point feature. It possesses the following properties: (i) the search direction has a sufficient descent feature and a trust region trait, and (ii) the proposed algorithm globally converges. Numerical results prove that the proposed algorithm is perfect compared with other similar optimization algorithms.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1703-1","citationCount":"17","resultStr":"{\"title\":\"A conjugate gradient algorithm for large-scale unconstrained optimization problems and nonlinear equations.\",\"authors\":\"Gonglin Yuan, Wujie Hu\",\"doi\":\"10.1186/s13660-018-1703-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For large-scale unconstrained optimization problems and nonlinear equations, we propose a new three-term conjugate gradient algorithm under the Yuan-Wei-Lu line search technique. It combines the steepest descent method with the famous conjugate gradient algorithm, which utilizes both the relevant function trait and the current point feature. It possesses the following properties: (i) the search direction has a sufficient descent feature and a trust region trait, and (ii) the proposed algorithm globally converges. Numerical results prove that the proposed algorithm is perfect compared with other similar optimization algorithms.</p>\",\"PeriodicalId\":49163,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13660-018-1703-1\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-018-1703-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/5/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1703-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/5/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
A conjugate gradient algorithm for large-scale unconstrained optimization problems and nonlinear equations.
For large-scale unconstrained optimization problems and nonlinear equations, we propose a new three-term conjugate gradient algorithm under the Yuan-Wei-Lu line search technique. It combines the steepest descent method with the famous conjugate gradient algorithm, which utilizes both the relevant function trait and the current point feature. It possesses the following properties: (i) the search direction has a sufficient descent feature and a trust region trait, and (ii) the proposed algorithm globally converges. Numerical results prove that the proposed algorithm is perfect compared with other similar optimization algorithms.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.