异构循环网络中相关-发射率关系的研究。

IF 2.3 4区 医学 Q1 Neuroscience Journal of Mathematical Neuroscience Pub Date : 2018-06-06 DOI:10.1186/s13408-018-0063-y
Andrea K Barreiro, Cheng Ly
{"title":"异构循环网络中相关-发射率关系的研究。","authors":"Andrea K Barreiro,&nbsp;Cheng Ly","doi":"10.1186/s13408-018-0063-y","DOIUrl":null,"url":null,"abstract":"<p><p>The structure of spiking activity in cortical networks has important implications for how the brain ultimately codes sensory signals. However, our understanding of how network and intrinsic cellular mechanisms affect spiking is still incomplete. In particular, whether cell pairs in a neural network show a positive (or no) relationship between pairwise spike count correlation and average firing rate is generally unknown. This relationship is important because it has been observed experimentally in some sensory systems, and it can enhance information in a common population code. Here we extend our prior work in developing mathematical tools to succinctly characterize the correlation and firing rate relationship in heterogeneous coupled networks. We find that very modest changes in how heterogeneous networks occupy parameter space can dramatically alter the correlation-firing rate relationship.</p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2018-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13408-018-0063-y","citationCount":"9","resultStr":"{\"title\":\"Investigating the Correlation-Firing Rate Relationship in Heterogeneous Recurrent Networks.\",\"authors\":\"Andrea K Barreiro,&nbsp;Cheng Ly\",\"doi\":\"10.1186/s13408-018-0063-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The structure of spiking activity in cortical networks has important implications for how the brain ultimately codes sensory signals. However, our understanding of how network and intrinsic cellular mechanisms affect spiking is still incomplete. In particular, whether cell pairs in a neural network show a positive (or no) relationship between pairwise spike count correlation and average firing rate is generally unknown. This relationship is important because it has been observed experimentally in some sensory systems, and it can enhance information in a common population code. Here we extend our prior work in developing mathematical tools to succinctly characterize the correlation and firing rate relationship in heterogeneous coupled networks. We find that very modest changes in how heterogeneous networks occupy parameter space can dramatically alter the correlation-firing rate relationship.</p>\",\"PeriodicalId\":54271,\"journal\":{\"name\":\"Journal of Mathematical Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2018-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13408-018-0063-y\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13408-018-0063-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13408-018-0063-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 9

摘要

皮层网络中尖峰活动的结构对大脑如何最终编码感觉信号具有重要意义。然而,我们对网络和内在细胞机制如何影响尖峰的理解仍然不完整。特别是,神经网络中的细胞对在成对尖峰计数相关和平均放电率之间是否显示正(或无)关系通常是未知的。这种关系很重要,因为它已经在一些感官系统中被实验观察到,并且它可以增强普通种群代码中的信息。在这里,我们扩展了我们之前在开发数学工具方面的工作,以简洁地表征异构耦合网络中的相关性和发射率关系。我们发现,异构网络如何占用参数空间的非常适度的变化可以显着改变相关-发射率关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating the Correlation-Firing Rate Relationship in Heterogeneous Recurrent Networks.

The structure of spiking activity in cortical networks has important implications for how the brain ultimately codes sensory signals. However, our understanding of how network and intrinsic cellular mechanisms affect spiking is still incomplete. In particular, whether cell pairs in a neural network show a positive (or no) relationship between pairwise spike count correlation and average firing rate is generally unknown. This relationship is important because it has been observed experimentally in some sensory systems, and it can enhance information in a common population code. Here we extend our prior work in developing mathematical tools to succinctly characterize the correlation and firing rate relationship in heterogeneous coupled networks. We find that very modest changes in how heterogeneous networks occupy parameter space can dramatically alter the correlation-firing rate relationship.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Neuroscience
Journal of Mathematical Neuroscience Neuroscience-Neuroscience (miscellaneous)
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions. It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged. Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.
期刊最新文献
Canard solutions in neural mass models: consequences on critical regimes. Rendering neuronal state equations compatible with the principle of stationary action. Pattern formation in a 2-population homogenized neuronal network model. Auditory streaming emerges from fast excitation and slow delayed inhibition. A model of on/off transitions in neurons of the deep cerebellar nuclei: deciphering the underlying ionic mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1