一种贝叶斯鲁棒IRT异常值检测模型。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2017-05-01 Epub Date: 2016-11-28 DOI:10.1177/0146621616679394
Nicole K Öztürk, George Karabatsos
{"title":"一种贝叶斯鲁棒IRT异常值检测模型。","authors":"Nicole K Öztürk,&nbsp;George Karabatsos","doi":"10.1177/0146621616679394","DOIUrl":null,"url":null,"abstract":"<p><p>In psychometric practice, the parameter estimates of a standard item-response theory (IRT) model can become biased when item-response data, of persons' individual responses to test items, contain outliers relative to the model. Also, the manual removal of outliers can be a time-consuming and difficult task. Besides, removing outliers leads to data information loss in parameter estimation. To address these concerns, a Bayesian IRT model that includes person and latent item-response outlier parameters, in addition to person ability and item parameters, is proposed and illustrated, and is defined by item characteristic curves (ICCs) that are each specified by a robust, Student's <i>t</i>-distribution function. The outlier parameters and the robust ICCs enable the model to automatically identify item-response outliers, and to make estimates of the person ability and item parameters more robust to outliers. Hence, under this IRT model, it is unnecessary to remove outliers from the data analysis. Our IRT model is illustrated through the analysis of two data sets, involving dichotomous- and polytomous-response items, respectively.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0146621616679394","citationCount":"5","resultStr":"{\"title\":\"A Bayesian Robust IRT Outlier-Detection Model.\",\"authors\":\"Nicole K Öztürk,&nbsp;George Karabatsos\",\"doi\":\"10.1177/0146621616679394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In psychometric practice, the parameter estimates of a standard item-response theory (IRT) model can become biased when item-response data, of persons' individual responses to test items, contain outliers relative to the model. Also, the manual removal of outliers can be a time-consuming and difficult task. Besides, removing outliers leads to data information loss in parameter estimation. To address these concerns, a Bayesian IRT model that includes person and latent item-response outlier parameters, in addition to person ability and item parameters, is proposed and illustrated, and is defined by item characteristic curves (ICCs) that are each specified by a robust, Student's <i>t</i>-distribution function. The outlier parameters and the robust ICCs enable the model to automatically identify item-response outliers, and to make estimates of the person ability and item parameters more robust to outliers. Hence, under this IRT model, it is unnecessary to remove outliers from the data analysis. Our IRT model is illustrated through the analysis of two data sets, involving dichotomous- and polytomous-response items, respectively.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0146621616679394\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/0146621616679394\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/11/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/0146621616679394","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

在心理测量实践中,当人们对测试项目的个体反应的项目反应数据包含相对于模型的异常值时,标准项目反应理论(IRT)模型的参数估计可能会产生偏差。此外,手动去除异常值可能是一项耗时且困难的任务。此外,去除异常值会导致参数估计中的数据信息丢失。为了解决这些问题,提出并说明了一个贝叶斯IRT模型,该模型除了包括人的能力和项目参数外,还包括人和潜在项目反应异常值参数,并由项目特征曲线(ICCs)定义,每个特征曲线都由一个鲁棒的学生t分布函数指定。异常值参数和鲁棒ICCs使模型能够自动识别项目反应异常值,并使人的能力和项目参数的估计对异常值更具鲁棒性。因此,在该IRT模型下,不需要从数据分析中去除离群值。我们的IRT模型是通过对两个数据集的分析来说明的,这两个数据集分别涉及二分类和多分类反应项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bayesian Robust IRT Outlier-Detection Model.

In psychometric practice, the parameter estimates of a standard item-response theory (IRT) model can become biased when item-response data, of persons' individual responses to test items, contain outliers relative to the model. Also, the manual removal of outliers can be a time-consuming and difficult task. Besides, removing outliers leads to data information loss in parameter estimation. To address these concerns, a Bayesian IRT model that includes person and latent item-response outlier parameters, in addition to person ability and item parameters, is proposed and illustrated, and is defined by item characteristic curves (ICCs) that are each specified by a robust, Student's t-distribution function. The outlier parameters and the robust ICCs enable the model to automatically identify item-response outliers, and to make estimates of the person ability and item parameters more robust to outliers. Hence, under this IRT model, it is unnecessary to remove outliers from the data analysis. Our IRT model is illustrated through the analysis of two data sets, involving dichotomous- and polytomous-response items, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1