为设计量身定制的患者报告结果信息图准备探索数据属性的系统方法。

Adriana Arcia, Janet Woollen, Suzanne Bakken
{"title":"为设计量身定制的患者报告结果信息图准备探索数据属性的系统方法。","authors":"Adriana Arcia, Janet Woollen, Suzanne Bakken","doi":"10.5334/egems.190","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>Tailored visualizations of patient reported outcomes (PROs) are valuable health communication tools to support shared decision making, health self-management, and engagement with research participants, such as cohorts in the NIH Precision Medicine Initiative. The automation of visualizations presents some unique design challenges. Efficient design processes depend upon gaining a thorough understanding of the data prior to prototyping.</p><p><strong>Case description: </strong>We present a systematic method to exploring data attributes, with a specific focus on application to self-reported health data. The method entails a) determining the meaning of the variable to be visualized, b) identifying the possible and likely values, and c) understanding how values are interpreted.</p><p><strong>Findings: </strong>We present two case studies to illustrate how this method affected our design decisions particularly with respect to outlier and non-missing zero values.</p><p><strong>Major themes: </strong>The use of a systematic method made our process of exploring data attributes easily manageable. The limitations of the data can narrow design options but can also prompt creative solutions and innovative design opportunities.</p><p><strong>Conclusion: </strong>A systematic method of exploration of data contributes to an efficient design process, uncovers design opportunities, and alerts the designer to design challenges.</p>","PeriodicalId":72880,"journal":{"name":"EGEMS (Washington, DC)","volume":" ","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983055/pdf/","citationCount":"14","resultStr":"{\"title\":\"A Systematic Method for Exploring Data Attributes in Preparation for Designing Tailored Infographics of Patient Reported Outcomes.\",\"authors\":\"Adriana Arcia, Janet Woollen, Suzanne Bakken\",\"doi\":\"10.5334/egems.190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context: </strong>Tailored visualizations of patient reported outcomes (PROs) are valuable health communication tools to support shared decision making, health self-management, and engagement with research participants, such as cohorts in the NIH Precision Medicine Initiative. The automation of visualizations presents some unique design challenges. Efficient design processes depend upon gaining a thorough understanding of the data prior to prototyping.</p><p><strong>Case description: </strong>We present a systematic method to exploring data attributes, with a specific focus on application to self-reported health data. The method entails a) determining the meaning of the variable to be visualized, b) identifying the possible and likely values, and c) understanding how values are interpreted.</p><p><strong>Findings: </strong>We present two case studies to illustrate how this method affected our design decisions particularly with respect to outlier and non-missing zero values.</p><p><strong>Major themes: </strong>The use of a systematic method made our process of exploring data attributes easily manageable. The limitations of the data can narrow design options but can also prompt creative solutions and innovative design opportunities.</p><p><strong>Conclusion: </strong>A systematic method of exploration of data contributes to an efficient design process, uncovers design opportunities, and alerts the designer to design challenges.</p>\",\"PeriodicalId\":72880,\"journal\":{\"name\":\"EGEMS (Washington, DC)\",\"volume\":\" \",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983055/pdf/\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EGEMS (Washington, DC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5334/egems.190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EGEMS (Washington, DC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/egems.190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

背景:量身定制的患者报告结果可视化(pro)是有价值的健康沟通工具,可支持共享决策、健康自我管理和与研究参与者(如NIH精准医学倡议的队列)的参与。可视化的自动化提出了一些独特的设计挑战。有效的设计过程取决于在原型制作之前对数据的透彻理解。案例描述:我们提出了一种系统的方法来探索数据属性,特别侧重于应用于自我报告的健康数据。该方法需要a)确定要可视化的变量的含义,b)识别可能的和可能的值,以及c)理解如何解释值。研究结果:我们提出了两个案例研究来说明这种方法如何影响我们的设计决策,特别是关于异常值和非缺失零值。主要主题:系统方法的使用使我们探索数据属性的过程易于管理。数据的限制可以缩小设计选项,但也可以促进创造性的解决方案和创新的设计机会。结论:系统的数据探索方法有助于有效的设计过程,发现设计机会,并提醒设计师注意设计挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Systematic Method for Exploring Data Attributes in Preparation for Designing Tailored Infographics of Patient Reported Outcomes.

Context: Tailored visualizations of patient reported outcomes (PROs) are valuable health communication tools to support shared decision making, health self-management, and engagement with research participants, such as cohorts in the NIH Precision Medicine Initiative. The automation of visualizations presents some unique design challenges. Efficient design processes depend upon gaining a thorough understanding of the data prior to prototyping.

Case description: We present a systematic method to exploring data attributes, with a specific focus on application to self-reported health data. The method entails a) determining the meaning of the variable to be visualized, b) identifying the possible and likely values, and c) understanding how values are interpreted.

Findings: We present two case studies to illustrate how this method affected our design decisions particularly with respect to outlier and non-missing zero values.

Major themes: The use of a systematic method made our process of exploring data attributes easily manageable. The limitations of the data can narrow design options but can also prompt creative solutions and innovative design opportunities.

Conclusion: A systematic method of exploration of data contributes to an efficient design process, uncovers design opportunities, and alerts the designer to design challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing a Novel Quality Improvement-Based Approach to Data Quality Monitoring and Enhancement in a Multipurpose Clinical Registry. A Spatial Analysis of Health Disparities Associated with Antibiotic Resistant Infections in Children Living in Atlanta (2002–2010) Predicting the Incidence of Pressure Ulcers in the Intensive Care Unit Using Machine Learning Applying a Commercialization-Readiness Framework to Optimize Value for Achieving Sustainability of an Electronic Health Data Research Network and Its Data Capabilities: The SAFTINet Experience. Innovative Data Science to Transform Health Care: All the Pieces Matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1