结合蛋白质组学和转录组学数据的转录因子的蛋白质- dna相互作用预测

Q4 Biochemistry, Genetics and Molecular Biology EuPA Open Proteomics Pub Date : 2016-12-01 DOI:10.1016/j.euprot.2016.09.001
Yu. Kondrakhin , T. Valeev , R. Sharipov , I. Yevshin , F. Kolpakov , A. Kel
{"title":"结合蛋白质组学和转录组学数据的转录因子的蛋白质- dna相互作用预测","authors":"Yu. Kondrakhin ,&nbsp;T. Valeev ,&nbsp;R. Sharipov ,&nbsp;I. Yevshin ,&nbsp;F. Kolpakov ,&nbsp;A. Kel","doi":"10.1016/j.euprot.2016.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>We compared positional weight matrix-based prediction methods for transcription factor (TF) binding sites using selected fraction of ChIP-seq data with the help of partial AUC measure (limited to false positive rate 0.1, that is the most relevant for the application of the TF search in the genome scale). Comparison of three prediction methods—additive, multiplicative and information-vector based (MATCH) showed an advantage of the MATCH method for majority of transcription factors tested. We demonstrated that application of TF site identifying methods can help to connect the proteomics and phosphoproteomics world of signaling networks to gene regulation and transcriptomics world.</p></div>","PeriodicalId":38260,"journal":{"name":"EuPA Open Proteomics","volume":"13 ","pages":"Pages 14-23"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.euprot.2016.09.001","citationCount":"4","resultStr":"{\"title\":\"Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data\",\"authors\":\"Yu. Kondrakhin ,&nbsp;T. Valeev ,&nbsp;R. Sharipov ,&nbsp;I. Yevshin ,&nbsp;F. Kolpakov ,&nbsp;A. Kel\",\"doi\":\"10.1016/j.euprot.2016.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We compared positional weight matrix-based prediction methods for transcription factor (TF) binding sites using selected fraction of ChIP-seq data with the help of partial AUC measure (limited to false positive rate 0.1, that is the most relevant for the application of the TF search in the genome scale). Comparison of three prediction methods—additive, multiplicative and information-vector based (MATCH) showed an advantage of the MATCH method for majority of transcription factors tested. We demonstrated that application of TF site identifying methods can help to connect the proteomics and phosphoproteomics world of signaling networks to gene regulation and transcriptomics world.</p></div>\",\"PeriodicalId\":38260,\"journal\":{\"name\":\"EuPA Open Proteomics\",\"volume\":\"13 \",\"pages\":\"Pages 14-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.euprot.2016.09.001\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EuPA Open Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212968516300447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EuPA Open Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212968516300447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4

摘要

我们比较了基于位置权矩阵的转录因子(TF)结合位点预测方法,使用ChIP-seq数据的选定部分,并借助部分AUC测量(限于假阳性率0.1,这是与TF搜索在基因组尺度上的应用最相关的)。通过对三种预测方法——相加法、乘法法和基于信息向量法(information-vector based, MATCH)的比较,发现MATCH方法对大多数被测转录因子具有优势。我们证明了TF位点鉴定方法的应用可以帮助将信号网络的蛋白质组学和磷酸化蛋白质组学世界与基因调控和转录组学世界联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of protein-DNA interactions of transcription factors linking proteomics and transcriptomics data

We compared positional weight matrix-based prediction methods for transcription factor (TF) binding sites using selected fraction of ChIP-seq data with the help of partial AUC measure (limited to false positive rate 0.1, that is the most relevant for the application of the TF search in the genome scale). Comparison of three prediction methods—additive, multiplicative and information-vector based (MATCH) showed an advantage of the MATCH method for majority of transcription factors tested. We demonstrated that application of TF site identifying methods can help to connect the proteomics and phosphoproteomics world of signaling networks to gene regulation and transcriptomics world.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EuPA Open Proteomics
EuPA Open Proteomics Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
审稿时长
103 days
期刊最新文献
Proceedings of the EuBIC-MS 2020 Developers’ Meeting Editorial: The next generation in (EuPA Open) Proteomics Aims & scope Proceedings of the EuBIC Winter School 2019 Introducing the YPIC challenge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1