基于综合质谱的生物标志物发现和验证平台应用于糖尿病肾病

Q4 Biochemistry, Genetics and Molecular Biology EuPA Open Proteomics Pub Date : 2017-03-01 DOI:10.1016/j.euprot.2016.12.001
Scott D. Bringans , Jun Ito , Thomas Stoll , Kaye Winfield , Michael Phillips , Kirsten Peters , Wendy A. Davis , Timothy M.E. Davis , Richard J. Lipscombe
{"title":"基于综合质谱的生物标志物发现和验证平台应用于糖尿病肾病","authors":"Scott D. Bringans ,&nbsp;Jun Ito ,&nbsp;Thomas Stoll ,&nbsp;Kaye Winfield ,&nbsp;Michael Phillips ,&nbsp;Kirsten Peters ,&nbsp;Wendy A. Davis ,&nbsp;Timothy M.E. Davis ,&nbsp;Richard J. Lipscombe","doi":"10.1016/j.euprot.2016.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>A protein biomarker discovery workflow was applied to plasma samples from patients at different stages of diabetic kidney disease. The proteomics platform produced a panel of significant plasma biomarkers that were statistically scrutinised against the current gold standard tests on an analysis of 572 patients. Five proteins were significantly associated with diabetic kidney disease defined by albuminuria, renal impairment (eGFR) and chronic kidney disease staging (CKD Stage ≥1, ROC curve of 0.77). The results prove the suitability and efficacy of the process used, and introduce a biomarker panel with the potential to improve diagnosis of diabetic kidney disease.</p></div>","PeriodicalId":38260,"journal":{"name":"EuPA Open Proteomics","volume":"14 ","pages":"Pages 1-10"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.euprot.2016.12.001","citationCount":"28","resultStr":"{\"title\":\"Comprehensive mass spectrometry based biomarker discovery and validation platform as applied to diabetic kidney disease\",\"authors\":\"Scott D. Bringans ,&nbsp;Jun Ito ,&nbsp;Thomas Stoll ,&nbsp;Kaye Winfield ,&nbsp;Michael Phillips ,&nbsp;Kirsten Peters ,&nbsp;Wendy A. Davis ,&nbsp;Timothy M.E. Davis ,&nbsp;Richard J. Lipscombe\",\"doi\":\"10.1016/j.euprot.2016.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A protein biomarker discovery workflow was applied to plasma samples from patients at different stages of diabetic kidney disease. The proteomics platform produced a panel of significant plasma biomarkers that were statistically scrutinised against the current gold standard tests on an analysis of 572 patients. Five proteins were significantly associated with diabetic kidney disease defined by albuminuria, renal impairment (eGFR) and chronic kidney disease staging (CKD Stage ≥1, ROC curve of 0.77). The results prove the suitability and efficacy of the process used, and introduce a biomarker panel with the potential to improve diagnosis of diabetic kidney disease.</p></div>\",\"PeriodicalId\":38260,\"journal\":{\"name\":\"EuPA Open Proteomics\",\"volume\":\"14 \",\"pages\":\"Pages 1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.euprot.2016.12.001\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EuPA Open Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212968516300393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EuPA Open Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212968516300393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 28

摘要

蛋白质生物标志物发现工作流程应用于不同阶段糖尿病肾病患者的血浆样本。蛋白质组学平台产生了一组重要的血浆生物标志物,并对572名患者的当前金标准测试进行了统计审查。5种蛋白与蛋白尿、肾功能损害(eGFR)和慢性肾脏疾病分期(CKD分期≥1期,ROC曲线为0.77)相关。结果证明了该方法的适用性和有效性,并介绍了一种具有改善糖尿病肾病诊断潜力的生物标志物面板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive mass spectrometry based biomarker discovery and validation platform as applied to diabetic kidney disease

A protein biomarker discovery workflow was applied to plasma samples from patients at different stages of diabetic kidney disease. The proteomics platform produced a panel of significant plasma biomarkers that were statistically scrutinised against the current gold standard tests on an analysis of 572 patients. Five proteins were significantly associated with diabetic kidney disease defined by albuminuria, renal impairment (eGFR) and chronic kidney disease staging (CKD Stage ≥1, ROC curve of 0.77). The results prove the suitability and efficacy of the process used, and introduce a biomarker panel with the potential to improve diagnosis of diabetic kidney disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EuPA Open Proteomics
EuPA Open Proteomics Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
0.00%
发文量
0
审稿时长
103 days
期刊最新文献
Proceedings of the EuBIC-MS 2020 Developers’ Meeting Editorial: The next generation in (EuPA Open) Proteomics Aims & scope Proceedings of the EuBIC Winter School 2019 Introducing the YPIC challenge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1