Naveen K Bansal, Mehdi Maadooliat, Steven J Schrodi
{"title":"经验贝叶斯方法测试多个假设与独立先验的左和右选择。","authors":"Naveen K Bansal, Mehdi Maadooliat, Steven J Schrodi","doi":"10.1515/sagmb-2018-0002","DOIUrl":null,"url":null,"abstract":"Abstract We consider a multiple hypotheses problem with directional alternatives in a decision theoretic framework. We obtain an empirical Bayes rule subject to a constraint on mixed directional false discovery rate (mdFDR≤α) under the semiparametric setting where the distribution of the test statistic is parametric, but the prior distribution is nonparametric. We proposed separate priors for the left tail and right tail alternatives as it may be required for many applications. The proposed Bayes rule is compared through simulation against rules proposed by Benjamini and Yekutieli and Efron. We illustrate the proposed methodology for two sets of data from biological experiments: HIV-transfected cell-line mRNA expression data, and a quantitative trait genome-wide SNP data set. We have developed a user-friendly web-based shiny App for the proposed method which is available through URL https://npseb.shinyapps.io/npseb/. The HIV and SNP data can be directly accessed, and the results presented in this paper can be executed.","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"17 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2018-0002","citationCount":"0","resultStr":"{\"title\":\"Empirical Bayesian approach to testing multiple hypotheses with separate priors for left and right alternatives.\",\"authors\":\"Naveen K Bansal, Mehdi Maadooliat, Steven J Schrodi\",\"doi\":\"10.1515/sagmb-2018-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider a multiple hypotheses problem with directional alternatives in a decision theoretic framework. We obtain an empirical Bayes rule subject to a constraint on mixed directional false discovery rate (mdFDR≤α) under the semiparametric setting where the distribution of the test statistic is parametric, but the prior distribution is nonparametric. We proposed separate priors for the left tail and right tail alternatives as it may be required for many applications. The proposed Bayes rule is compared through simulation against rules proposed by Benjamini and Yekutieli and Efron. We illustrate the proposed methodology for two sets of data from biological experiments: HIV-transfected cell-line mRNA expression data, and a quantitative trait genome-wide SNP data set. We have developed a user-friendly web-based shiny App for the proposed method which is available through URL https://npseb.shinyapps.io/npseb/. The HIV and SNP data can be directly accessed, and the results presented in this paper can be executed.\",\"PeriodicalId\":48980,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2018-0002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2018-0002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2018-0002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Empirical Bayesian approach to testing multiple hypotheses with separate priors for left and right alternatives.
Abstract We consider a multiple hypotheses problem with directional alternatives in a decision theoretic framework. We obtain an empirical Bayes rule subject to a constraint on mixed directional false discovery rate (mdFDR≤α) under the semiparametric setting where the distribution of the test statistic is parametric, but the prior distribution is nonparametric. We proposed separate priors for the left tail and right tail alternatives as it may be required for many applications. The proposed Bayes rule is compared through simulation against rules proposed by Benjamini and Yekutieli and Efron. We illustrate the proposed methodology for two sets of data from biological experiments: HIV-transfected cell-line mRNA expression data, and a quantitative trait genome-wide SNP data set. We have developed a user-friendly web-based shiny App for the proposed method which is available through URL https://npseb.shinyapps.io/npseb/. The HIV and SNP data can be directly accessed, and the results presented in this paper can be executed.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.