André O'Reilly Beringhs, Aline Benedita Dos Santos Fonseca, Angela Machado De Campos, Diva Sonaglio
{"title":"流化床包覆聚乳酸微球与载体微球的结合:一种改善微球流动性的新方法。","authors":"André O'Reilly Beringhs, Aline Benedita Dos Santos Fonseca, Angela Machado De Campos, Diva Sonaglio","doi":"10.1155/2018/3874348","DOIUrl":null,"url":null,"abstract":"<p><p>Micro- and nanoparticles have been vastly studied due to their biopharmaceutical advantages. However, these particles generally display very weak packing and poor mechanical properties. Hereby, a new methodology is proposed to associate poorly flowing particles to macrostructures targeting the improvement of flowability and redispersibility of the particles. <i>Cecropia glaziovii</i>-loaded PLGA microspheres (4.59 ± 0.04 <i>μ</i>m) were associated with carrier pellets by film coating in a top-spray fluid bed equipment. Optimal conditions were determined employing a IV-Optimal factorial design and RGB image analysis as 1% (w/v) Kollicoat® Protect as coating polymer (2:1 weight ratio of coating suspension to carrier pellets), containing 5 mg/mL microspheres (loading of 28.07 ± 1.01 mg/g). The method led to an improvement of the overall flowability. No relevant molecular interactions between PLGA microspheres and polymers were found. Microspheres detached rapidly from the surface of the pellets, without agglomeration, when exposed to hydrodynamic forces. <i>In vitro</i> release profiles, prior to and after fluid bed coating, showed no relevant changes in drug release rate and extent. The methodology developed is suitable for further applications when an improvement on the flow properties and redispersibility of the product is desired. We showed an easy-to-implement methodology that can be executed without significant increase in costs.</p>","PeriodicalId":16744,"journal":{"name":"Journal of Pharmaceutics","volume":"2018 ","pages":"3874348"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/3874348","citationCount":"3","resultStr":"{\"title\":\"Association of PLGA Microspheres to Carrier Pellets by Fluid Bed Coating: A Novel Approach towards Improving the Flowability of Microparticles.\",\"authors\":\"André O'Reilly Beringhs, Aline Benedita Dos Santos Fonseca, Angela Machado De Campos, Diva Sonaglio\",\"doi\":\"10.1155/2018/3874348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Micro- and nanoparticles have been vastly studied due to their biopharmaceutical advantages. However, these particles generally display very weak packing and poor mechanical properties. Hereby, a new methodology is proposed to associate poorly flowing particles to macrostructures targeting the improvement of flowability and redispersibility of the particles. <i>Cecropia glaziovii</i>-loaded PLGA microspheres (4.59 ± 0.04 <i>μ</i>m) were associated with carrier pellets by film coating in a top-spray fluid bed equipment. Optimal conditions were determined employing a IV-Optimal factorial design and RGB image analysis as 1% (w/v) Kollicoat® Protect as coating polymer (2:1 weight ratio of coating suspension to carrier pellets), containing 5 mg/mL microspheres (loading of 28.07 ± 1.01 mg/g). The method led to an improvement of the overall flowability. No relevant molecular interactions between PLGA microspheres and polymers were found. Microspheres detached rapidly from the surface of the pellets, without agglomeration, when exposed to hydrodynamic forces. <i>In vitro</i> release profiles, prior to and after fluid bed coating, showed no relevant changes in drug release rate and extent. The methodology developed is suitable for further applications when an improvement on the flow properties and redispersibility of the product is desired. We showed an easy-to-implement methodology that can be executed without significant increase in costs.</p>\",\"PeriodicalId\":16744,\"journal\":{\"name\":\"Journal of Pharmaceutics\",\"volume\":\"2018 \",\"pages\":\"3874348\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/3874348\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmaceutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/3874348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/3874348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Association of PLGA Microspheres to Carrier Pellets by Fluid Bed Coating: A Novel Approach towards Improving the Flowability of Microparticles.
Micro- and nanoparticles have been vastly studied due to their biopharmaceutical advantages. However, these particles generally display very weak packing and poor mechanical properties. Hereby, a new methodology is proposed to associate poorly flowing particles to macrostructures targeting the improvement of flowability and redispersibility of the particles. Cecropia glaziovii-loaded PLGA microspheres (4.59 ± 0.04 μm) were associated with carrier pellets by film coating in a top-spray fluid bed equipment. Optimal conditions were determined employing a IV-Optimal factorial design and RGB image analysis as 1% (w/v) Kollicoat® Protect as coating polymer (2:1 weight ratio of coating suspension to carrier pellets), containing 5 mg/mL microspheres (loading of 28.07 ± 1.01 mg/g). The method led to an improvement of the overall flowability. No relevant molecular interactions between PLGA microspheres and polymers were found. Microspheres detached rapidly from the surface of the pellets, without agglomeration, when exposed to hydrodynamic forces. In vitro release profiles, prior to and after fluid bed coating, showed no relevant changes in drug release rate and extent. The methodology developed is suitable for further applications when an improvement on the flow properties and redispersibility of the product is desired. We showed an easy-to-implement methodology that can be executed without significant increase in costs.