Nimisha Chaturvedi, Renée X de Menezes, Jelle J Goeman, Wessel van Wieringen
{"title":"一种检测两组样本间差异间接反效应的检验。","authors":"Nimisha Chaturvedi, Renée X de Menezes, Jelle J Goeman, Wessel van Wieringen","doi":"10.1515/sagmb-2017-0058","DOIUrl":null,"url":null,"abstract":"<p><p>Integrative analysis of copy number and gene expression data can help in understanding the cis and trans effect of copy number aberrations on transcription levels of genes involved in a pathway. To analyse how these copy number mediated gene-gene interactions differ between groups of samples we propose a new method, named dNET. Our method uses ridge regression to model the network topology involving one gene's expression level, its gene dosage and the expression levels of other genes in the network. The interaction parameters are estimated by fitting the model per gene for all samples together. However, instead of testing for differential network topology per gene, dNET tests for an overall difference in estimated parameters between two groups of samples and produces a single p-value. With the help of several simulation studies, we show that dNET can detect differential network nodes with high accuracy and low rate of false positives even in the presence of differential cis effects. We also apply dNET to publicly available TCGA cancer datasets and identify pathways where copy number mediated gene-gene interactions differ between samples with cancer stage lower than stage 3 and samples with cancer stage 3 or above.</p>","PeriodicalId":48980,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"17 5","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2017-0058","citationCount":"0","resultStr":"{\"title\":\"A test for detecting differential indirect trans effects between two groups of samples.\",\"authors\":\"Nimisha Chaturvedi, Renée X de Menezes, Jelle J Goeman, Wessel van Wieringen\",\"doi\":\"10.1515/sagmb-2017-0058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrative analysis of copy number and gene expression data can help in understanding the cis and trans effect of copy number aberrations on transcription levels of genes involved in a pathway. To analyse how these copy number mediated gene-gene interactions differ between groups of samples we propose a new method, named dNET. Our method uses ridge regression to model the network topology involving one gene's expression level, its gene dosage and the expression levels of other genes in the network. The interaction parameters are estimated by fitting the model per gene for all samples together. However, instead of testing for differential network topology per gene, dNET tests for an overall difference in estimated parameters between two groups of samples and produces a single p-value. With the help of several simulation studies, we show that dNET can detect differential network nodes with high accuracy and low rate of false positives even in the presence of differential cis effects. We also apply dNET to publicly available TCGA cancer datasets and identify pathways where copy number mediated gene-gene interactions differ between samples with cancer stage lower than stage 3 and samples with cancer stage 3 or above.</p>\",\"PeriodicalId\":48980,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2017-0058\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2017-0058\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2017-0058","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A test for detecting differential indirect trans effects between two groups of samples.
Integrative analysis of copy number and gene expression data can help in understanding the cis and trans effect of copy number aberrations on transcription levels of genes involved in a pathway. To analyse how these copy number mediated gene-gene interactions differ between groups of samples we propose a new method, named dNET. Our method uses ridge regression to model the network topology involving one gene's expression level, its gene dosage and the expression levels of other genes in the network. The interaction parameters are estimated by fitting the model per gene for all samples together. However, instead of testing for differential network topology per gene, dNET tests for an overall difference in estimated parameters between two groups of samples and produces a single p-value. With the help of several simulation studies, we show that dNET can detect differential network nodes with high accuracy and low rate of false positives even in the presence of differential cis effects. We also apply dNET to publicly available TCGA cancer datasets and identify pathways where copy number mediated gene-gene interactions differ between samples with cancer stage lower than stage 3 and samples with cancer stage 3 or above.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.