{"title":"集值向量平衡问题的近似弱有效解。","authors":"Jian Chen, Yihong Xu, Ke Zhang","doi":"10.1186/s13660-018-1773-0","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we introduce a new kind of approximate weakly efficient solutions to the set-valued vector equilibrium problems with constraints in locally convex Hausdorff topological vector spaces; then we discuss a relationship between the weakly efficient solutions and approximate weakly efficient solutions. Under the assumption of near cone-subconvexlikeness, by using the separation theorem for convex sets we establish Kuhn-Tucker-type and Lagrange-type optimality conditions for set-valued vector equilibrium problems, respectively.</p>","PeriodicalId":49163,"journal":{"name":"Journal of Inequalities and Applications","volume":"2018 1","pages":"181"},"PeriodicalIF":1.6000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13660-018-1773-0","citationCount":"3","resultStr":"{\"title\":\"Approximate weakly efficient solutions of set-valued vector equilibrium problems.\",\"authors\":\"Jian Chen, Yihong Xu, Ke Zhang\",\"doi\":\"10.1186/s13660-018-1773-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we introduce a new kind of approximate weakly efficient solutions to the set-valued vector equilibrium problems with constraints in locally convex Hausdorff topological vector spaces; then we discuss a relationship between the weakly efficient solutions and approximate weakly efficient solutions. Under the assumption of near cone-subconvexlikeness, by using the separation theorem for convex sets we establish Kuhn-Tucker-type and Lagrange-type optimality conditions for set-valued vector equilibrium problems, respectively.</p>\",\"PeriodicalId\":49163,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"2018 1\",\"pages\":\"181\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13660-018-1773-0\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-018-1773-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-018-1773-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Approximate weakly efficient solutions of set-valued vector equilibrium problems.
In this paper, we introduce a new kind of approximate weakly efficient solutions to the set-valued vector equilibrium problems with constraints in locally convex Hausdorff topological vector spaces; then we discuss a relationship between the weakly efficient solutions and approximate weakly efficient solutions. Under the assumption of near cone-subconvexlikeness, by using the separation theorem for convex sets we establish Kuhn-Tucker-type and Lagrange-type optimality conditions for set-valued vector equilibrium problems, respectively.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.