{"title":"Hippo通路在心脏再生中的调控和功能。","authors":"Shijie Liu, James F Martin","doi":"10.1002/wdev.335","DOIUrl":null,"url":null,"abstract":"<p><p>Heart failure caused by cardiomyocyte loss and fibrosis is a leading cause of death worldwide. Although current treatments for heart failure such as heart transplantation and left ventricular assist device implantation have obvious value, new approaches are needed. Endogenous adult cardiomyocyte renewal is measurable but inefficient and inadequate in response to extensive acute heart damage. Stimulating self-renewal of endogenous cardiomyocytes holds great promise for heart repair. Uncovering the genetic mechanisms underlying cardiomyocyte renewal is a critical step in developing new approaches to repairing the heart. Recent studies have revealed that the inhibition of the Hippo pathway is sufficient to promote the proliferation of endogenous cardiomyocytes, indicating that the manipulation of the Hippo pathway in the heart may be a promising treatment for heart failure in the future. We summarize recent findings that have shed light on the function of the Hippo pathway in heart regeneration. We also discuss the mechanisms by which Hippo pathway inhibition promotes heart regeneration and how the Hippo pathway responds to different types of injury or stress during the regenerative process. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"8 1","pages":"e335"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.335","citationCount":"21","resultStr":"{\"title\":\"The regulation and function of the Hippo pathway in heart regeneration.\",\"authors\":\"Shijie Liu, James F Martin\",\"doi\":\"10.1002/wdev.335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heart failure caused by cardiomyocyte loss and fibrosis is a leading cause of death worldwide. Although current treatments for heart failure such as heart transplantation and left ventricular assist device implantation have obvious value, new approaches are needed. Endogenous adult cardiomyocyte renewal is measurable but inefficient and inadequate in response to extensive acute heart damage. Stimulating self-renewal of endogenous cardiomyocytes holds great promise for heart repair. Uncovering the genetic mechanisms underlying cardiomyocyte renewal is a critical step in developing new approaches to repairing the heart. Recent studies have revealed that the inhibition of the Hippo pathway is sufficient to promote the proliferation of endogenous cardiomyocytes, indicating that the manipulation of the Hippo pathway in the heart may be a promising treatment for heart failure in the future. We summarize recent findings that have shed light on the function of the Hippo pathway in heart regeneration. We also discuss the mechanisms by which Hippo pathway inhibition promotes heart regeneration and how the Hippo pathway responds to different types of injury or stress during the regenerative process. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.</p>\",\"PeriodicalId\":23630,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Developmental Biology\",\"volume\":\"8 1\",\"pages\":\"e335\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wdev.335\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wdev.335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/8/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/8/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The regulation and function of the Hippo pathway in heart regeneration.
Heart failure caused by cardiomyocyte loss and fibrosis is a leading cause of death worldwide. Although current treatments for heart failure such as heart transplantation and left ventricular assist device implantation have obvious value, new approaches are needed. Endogenous adult cardiomyocyte renewal is measurable but inefficient and inadequate in response to extensive acute heart damage. Stimulating self-renewal of endogenous cardiomyocytes holds great promise for heart repair. Uncovering the genetic mechanisms underlying cardiomyocyte renewal is a critical step in developing new approaches to repairing the heart. Recent studies have revealed that the inhibition of the Hippo pathway is sufficient to promote the proliferation of endogenous cardiomyocytes, indicating that the manipulation of the Hippo pathway in the heart may be a promising treatment for heart failure in the future. We summarize recent findings that have shed light on the function of the Hippo pathway in heart regeneration. We also discuss the mechanisms by which Hippo pathway inhibition promotes heart regeneration and how the Hippo pathway responds to different types of injury or stress during the regenerative process. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.
期刊介绍:
Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology.
The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.