{"title":"海马体θ波能量压力在非快速眼动睡眠期间形成,并在快速眼动睡眠期间消散。","authors":"T E Bjorness, V Booth, G R Poe","doi":"10.12871/00039829201833","DOIUrl":null,"url":null,"abstract":"<p><p>The theta rhythm during waking has been associated with voluntary motor activity and learning processes involving the hippocampus. Theta also occurs continuously during rapid eye movement (REM) sleep where it likely serves memory consolidation. Theta amplitude builds across wakefulness and is the best indicator of the homeostatic need for non-REM (NREM) sleep. Although REM sleep is homeostatically regulated independently of NREM sleep, the drivers of REM sleep regulation are under debate. The dynamics of theta within REM sleep bouts have not been thoroughly explored. We equipped 20 male rats with sleep instrumentation and hippocampal electrodes to measure theta across normal sleep/waking periods over the first 4 h of the sleep phase on two consecutive days. We found that theta power decreased by a third, on average, within individual REM sleep bouts, but recovered between bouts. Thus, there was no general decline in theta power across the duration of the recording period or between days. The time constant of theta power decline within a REM sleep bout was the same whether the bout was short, midlength, or long, and did not predict the behavioral state immediately following the REM sleep bout. Interestingly, the more time spent in NREM sleep prior to REM sleep, the larger the decline in theta power during REM sleep, indicating that REM sleep theta may be homeostatically driven by NREM sleep just as NREM delta power is driven by the length of prior waking and by waking theta. Potential causes and implications for this phenomenon are discussed.</p>","PeriodicalId":55476,"journal":{"name":"Archives Italiennes De Biologie","volume":"156 3","pages":"112-126"},"PeriodicalIF":0.8000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7543912/pdf/nihms-1626110.pdf","citationCount":"12","resultStr":"{\"title\":\"Hippocampal theta power pressure builds over non-REM sleep and dissipates within REM sleep episodes.\",\"authors\":\"T E Bjorness, V Booth, G R Poe\",\"doi\":\"10.12871/00039829201833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The theta rhythm during waking has been associated with voluntary motor activity and learning processes involving the hippocampus. Theta also occurs continuously during rapid eye movement (REM) sleep where it likely serves memory consolidation. Theta amplitude builds across wakefulness and is the best indicator of the homeostatic need for non-REM (NREM) sleep. Although REM sleep is homeostatically regulated independently of NREM sleep, the drivers of REM sleep regulation are under debate. The dynamics of theta within REM sleep bouts have not been thoroughly explored. We equipped 20 male rats with sleep instrumentation and hippocampal electrodes to measure theta across normal sleep/waking periods over the first 4 h of the sleep phase on two consecutive days. We found that theta power decreased by a third, on average, within individual REM sleep bouts, but recovered between bouts. Thus, there was no general decline in theta power across the duration of the recording period or between days. The time constant of theta power decline within a REM sleep bout was the same whether the bout was short, midlength, or long, and did not predict the behavioral state immediately following the REM sleep bout. Interestingly, the more time spent in NREM sleep prior to REM sleep, the larger the decline in theta power during REM sleep, indicating that REM sleep theta may be homeostatically driven by NREM sleep just as NREM delta power is driven by the length of prior waking and by waking theta. Potential causes and implications for this phenomenon are discussed.</p>\",\"PeriodicalId\":55476,\"journal\":{\"name\":\"Archives Italiennes De Biologie\",\"volume\":\"156 3\",\"pages\":\"112-126\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7543912/pdf/nihms-1626110.pdf\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives Italiennes De Biologie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12871/00039829201833\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives Italiennes De Biologie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12871/00039829201833","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Hippocampal theta power pressure builds over non-REM sleep and dissipates within REM sleep episodes.
The theta rhythm during waking has been associated with voluntary motor activity and learning processes involving the hippocampus. Theta also occurs continuously during rapid eye movement (REM) sleep where it likely serves memory consolidation. Theta amplitude builds across wakefulness and is the best indicator of the homeostatic need for non-REM (NREM) sleep. Although REM sleep is homeostatically regulated independently of NREM sleep, the drivers of REM sleep regulation are under debate. The dynamics of theta within REM sleep bouts have not been thoroughly explored. We equipped 20 male rats with sleep instrumentation and hippocampal electrodes to measure theta across normal sleep/waking periods over the first 4 h of the sleep phase on two consecutive days. We found that theta power decreased by a third, on average, within individual REM sleep bouts, but recovered between bouts. Thus, there was no general decline in theta power across the duration of the recording period or between days. The time constant of theta power decline within a REM sleep bout was the same whether the bout was short, midlength, or long, and did not predict the behavioral state immediately following the REM sleep bout. Interestingly, the more time spent in NREM sleep prior to REM sleep, the larger the decline in theta power during REM sleep, indicating that REM sleep theta may be homeostatically driven by NREM sleep just as NREM delta power is driven by the length of prior waking and by waking theta. Potential causes and implications for this phenomenon are discussed.
期刊介绍:
Archives Italiennes de Biologie - a Journal of Neuroscience- was founded in 1882 and represents one of the oldest neuroscience journals in the world. Archives publishes original contributions in all the fields of neuroscience, including neurophysiology, experimental neuroanatomy and electron microscopy, neurobiology, neurochemistry, molecular biology, genetics, functional brain imaging and behavioral science.
Archives Italiennes de Biologie also publishes monographic special issues that collect papers on a specific topic of interest in neuroscience as well as the proceedings of important scientific events.
Archives Italiennes de Biologie is published in 4 issues per year and is indexed in the major collections of biomedical journals, including Medline, PubMed, Current Contents, Excerpta Medica.