{"title":"CRISPR/Cas9系统:基因组工程的细菌裁缝。","authors":"Bilal Ahmad Lone, Shibendra Kumar Lal Karna, Faiz Ahmad, Nerina Shahi, Yuba Raj Pokharel","doi":"10.1155/2018/3797214","DOIUrl":null,"url":null,"abstract":"<p><p>Microbes use diverse defence strategies that allow them to withstand exposure to a variety of genome invaders such as bacteriophages and plasmids. One such defence strategy is the use of RNA guided endonuclease called CRISPR-associated (Cas) 9 protein. The Cas9 protein, derived from type II CRISPR/Cas system, has been adapted as a versatile tool for genome targeting and engineering due to its simplicity and high efficiency over the earlier tools such as ZFNs and TALENs. With recent advancements, CRISPR/Cas9 technology has emerged as a revolutionary tool for modulating the genome in living cells and inspires innovative translational applications in different fields. In this paper we review the developments and its potential uses in the CRISPR/Cas9 technology as well as recent advancements in genome engineering using CRISPR/Cas9.</p>","PeriodicalId":37545,"journal":{"name":"Genetics Research International","volume":"2018 ","pages":"3797214"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167567/pdf/","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas9 System: A Bacterial Tailor for Genomic Engineering.\",\"authors\":\"Bilal Ahmad Lone, Shibendra Kumar Lal Karna, Faiz Ahmad, Nerina Shahi, Yuba Raj Pokharel\",\"doi\":\"10.1155/2018/3797214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbes use diverse defence strategies that allow them to withstand exposure to a variety of genome invaders such as bacteriophages and plasmids. One such defence strategy is the use of RNA guided endonuclease called CRISPR-associated (Cas) 9 protein. The Cas9 protein, derived from type II CRISPR/Cas system, has been adapted as a versatile tool for genome targeting and engineering due to its simplicity and high efficiency over the earlier tools such as ZFNs and TALENs. With recent advancements, CRISPR/Cas9 technology has emerged as a revolutionary tool for modulating the genome in living cells and inspires innovative translational applications in different fields. In this paper we review the developments and its potential uses in the CRISPR/Cas9 technology as well as recent advancements in genome engineering using CRISPR/Cas9.</p>\",\"PeriodicalId\":37545,\"journal\":{\"name\":\"Genetics Research International\",\"volume\":\"2018 \",\"pages\":\"3797214\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167567/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics Research International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/3797214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/3797214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
CRISPR/Cas9 System: A Bacterial Tailor for Genomic Engineering.
Microbes use diverse defence strategies that allow them to withstand exposure to a variety of genome invaders such as bacteriophages and plasmids. One such defence strategy is the use of RNA guided endonuclease called CRISPR-associated (Cas) 9 protein. The Cas9 protein, derived from type II CRISPR/Cas system, has been adapted as a versatile tool for genome targeting and engineering due to its simplicity and high efficiency over the earlier tools such as ZFNs and TALENs. With recent advancements, CRISPR/Cas9 technology has emerged as a revolutionary tool for modulating the genome in living cells and inspires innovative translational applications in different fields. In this paper we review the developments and its potential uses in the CRISPR/Cas9 technology as well as recent advancements in genome engineering using CRISPR/Cas9.
期刊介绍:
Genetics Research International is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of genetics and genomics. The journal focuses on articles bearing on heredity, biochemistry, and molecular biology, as well as clinical findings.