后肛门闭锁和狭窄:鼻腔的发展和疾病。

Q1 Biochemistry, Genetics and Molecular Biology Wiley Interdisciplinary Reviews: Developmental Biology Pub Date : 2019-01-01 Epub Date: 2018-10-15 DOI:10.1002/wdev.336
Hiroshi Kurosaka
{"title":"后肛门闭锁和狭窄:鼻腔的发展和疾病。","authors":"Hiroshi Kurosaka","doi":"10.1002/wdev.336","DOIUrl":null,"url":null,"abstract":"<p><p>Proper craniofacial development in vertebrates depends on growth and fusion of the facial processes during embryogenesis. Failure of any step in this process could lead to craniofacial anomalies such as facial clefting, which has been well studied with regard to its molecular etiology and cellular pathogenesis. Nasal cavity invagination is also a critical event in proper craniofacial development, and is required for the formation of a functional nasal cavity and airway. The nasal cavity must connect the nasopharynx with the primitive choanae to complete an airway from the nostril to the nasopharynx. In contrast to orofacial clefts, defects in nasal cavity and airway formation, such as choanal atresia (CA), in which the connection between the nasal airway and nasopharynx is physically blocked, have largely been understudied. This is also true for a narrowed connection between the nasal cavity and the nasopharynx, which is known as choanal stenosis (CS). CA occurs in approximately 1 in 5,000 live births, and can present in isolation but typically arises as part of a syndrome. Despite the fact that CA and CS usually require immediate intervention, and substantially affect the quality of life of affected individuals, the etiology and pathogenesis of CA and CS have remained elusive. In this review I focus on the process of nasal cavity development with respect to forming a functional airway and discuss the cellular behavior and molecular networks governing this process. Additionally, the etiology of human CA is discussed using examples of disorders which involve CA or CS. This article is categorized under: Signaling Pathways > Cell Fate Signaling Comparative Development and Evolution > Model Systems Birth Defects > Craniofacial and Nervous System Anomalies.</p>","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":"8 1","pages":"e336"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.336","citationCount":"18","resultStr":"{\"title\":\"Choanal atresia and stenosis: Development and diseases of the nasal cavity.\",\"authors\":\"Hiroshi Kurosaka\",\"doi\":\"10.1002/wdev.336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proper craniofacial development in vertebrates depends on growth and fusion of the facial processes during embryogenesis. Failure of any step in this process could lead to craniofacial anomalies such as facial clefting, which has been well studied with regard to its molecular etiology and cellular pathogenesis. Nasal cavity invagination is also a critical event in proper craniofacial development, and is required for the formation of a functional nasal cavity and airway. The nasal cavity must connect the nasopharynx with the primitive choanae to complete an airway from the nostril to the nasopharynx. In contrast to orofacial clefts, defects in nasal cavity and airway formation, such as choanal atresia (CA), in which the connection between the nasal airway and nasopharynx is physically blocked, have largely been understudied. This is also true for a narrowed connection between the nasal cavity and the nasopharynx, which is known as choanal stenosis (CS). CA occurs in approximately 1 in 5,000 live births, and can present in isolation but typically arises as part of a syndrome. Despite the fact that CA and CS usually require immediate intervention, and substantially affect the quality of life of affected individuals, the etiology and pathogenesis of CA and CS have remained elusive. In this review I focus on the process of nasal cavity development with respect to forming a functional airway and discuss the cellular behavior and molecular networks governing this process. Additionally, the etiology of human CA is discussed using examples of disorders which involve CA or CS. This article is categorized under: Signaling Pathways > Cell Fate Signaling Comparative Development and Evolution > Model Systems Birth Defects > Craniofacial and Nervous System Anomalies.</p>\",\"PeriodicalId\":23630,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews: Developmental Biology\",\"volume\":\"8 1\",\"pages\":\"e336\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wdev.336\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews: Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wdev.336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/10/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/10/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 18

摘要

脊椎动物的颅面发育取决于胚胎发育过程中面部突的生长和融合。这一过程中任何步骤的失败都可能导致颅面异常,如面部裂,其分子病因和细胞发病机制已经得到了很好的研究。鼻腔内陷也是颅面正常发育的关键事件,是形成功能性鼻腔和气道所必需的。鼻腔必须连接鼻咽部和原始鼻窦,以完成从鼻孔到鼻咽部的气道。与口面裂相反,鼻腔和气道形成的缺陷,如后肛门闭锁(CA),鼻气道和鼻咽部之间的连接被物理阻塞,在很大程度上尚未得到充分研究。对于鼻腔和鼻咽之间的狭窄连接也是如此,这被称为后鼻孔狭窄(CS)。CA发生在大约1 / 5000的活产婴儿中,可以单独出现,但通常作为综合征的一部分出现。尽管CA和CS通常需要立即干预,并严重影响患者的生活质量,但CA和CS的病因和发病机制仍然难以捉摸。在这篇综述中,我将重点介绍鼻腔发育过程中形成功能性气道的过程,并讨论控制这一过程的细胞行为和分子网络。此外,还讨论了人类CA的病因学,并使用涉及CA或CS的疾病实例进行了讨论。本文分类如下:信号通路>细胞命运>信号传导比较发育和进化>模型系统出生缺陷>颅面和神经系统异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Choanal atresia and stenosis: Development and diseases of the nasal cavity.

Proper craniofacial development in vertebrates depends on growth and fusion of the facial processes during embryogenesis. Failure of any step in this process could lead to craniofacial anomalies such as facial clefting, which has been well studied with regard to its molecular etiology and cellular pathogenesis. Nasal cavity invagination is also a critical event in proper craniofacial development, and is required for the formation of a functional nasal cavity and airway. The nasal cavity must connect the nasopharynx with the primitive choanae to complete an airway from the nostril to the nasopharynx. In contrast to orofacial clefts, defects in nasal cavity and airway formation, such as choanal atresia (CA), in which the connection between the nasal airway and nasopharynx is physically blocked, have largely been understudied. This is also true for a narrowed connection between the nasal cavity and the nasopharynx, which is known as choanal stenosis (CS). CA occurs in approximately 1 in 5,000 live births, and can present in isolation but typically arises as part of a syndrome. Despite the fact that CA and CS usually require immediate intervention, and substantially affect the quality of life of affected individuals, the etiology and pathogenesis of CA and CS have remained elusive. In this review I focus on the process of nasal cavity development with respect to forming a functional airway and discuss the cellular behavior and molecular networks governing this process. Additionally, the etiology of human CA is discussed using examples of disorders which involve CA or CS. This article is categorized under: Signaling Pathways > Cell Fate Signaling Comparative Development and Evolution > Model Systems Birth Defects > Craniofacial and Nervous System Anomalies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology. The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.
期刊最新文献
Zebrafish models of acute leukemias: Current models and future directions. The macro and micro of chromosome conformation capture. Human pluripotent stem cell-derived lung organoids: Potential applications in development and disease modeling. Single-cell RNA sequencing in Drosophila: Technologies and applications. Schwann cell development: From neural crest to myelin sheath.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1