基于无源RFID的医疗团队活动识别。

Xinyu Li, Dongyang Yao, Xuechao Pan, Jonathan Johannaman, JaeWon Yang, Rachel Webman, Aleksandra Sarcevic, Ivan Marsic, Randall S Burd
{"title":"基于无源RFID的医疗团队活动识别。","authors":"Xinyu Li,&nbsp;Dongyang Yao,&nbsp;Xuechao Pan,&nbsp;Jonathan Johannaman,&nbsp;JaeWon Yang,&nbsp;Rachel Webman,&nbsp;Aleksandra Sarcevic,&nbsp;Ivan Marsic,&nbsp;Randall S Burd","doi":"10.1109/RFID.2016.7488002","DOIUrl":null,"url":null,"abstract":"<p><p>We describe a novel and practical activity recognition system for dynamic and complex medical settings using only passive RFID technology. Our activity recognition approach is based on the use of objects that are specific for a given activity. The object-use status is detected from RFID data and the activities are predicted from the statuses of use of different objects. We tagged 10 objects in a trauma room of an emergency department and recorded RFID data for 10 actual trauma resuscitations. More than 20,000 seconds of data were collected and used for analysis. The system achieved a 96% overall accuracy with a 0.74 <i>F</i>-score for detecting use of 10 common resuscitation objects and 95% accuracy with a 0.30 F Score for activity recognition of 10 medical activities.</p>","PeriodicalId":92524,"journal":{"name":"IEEE International Conference on RFID. IEEE International Conference on RFID","volume":"2016 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/RFID.2016.7488002","citationCount":"25","resultStr":"{\"title\":\"Activity Recognition for Medical Teamwork Based on Passive RFID.\",\"authors\":\"Xinyu Li,&nbsp;Dongyang Yao,&nbsp;Xuechao Pan,&nbsp;Jonathan Johannaman,&nbsp;JaeWon Yang,&nbsp;Rachel Webman,&nbsp;Aleksandra Sarcevic,&nbsp;Ivan Marsic,&nbsp;Randall S Burd\",\"doi\":\"10.1109/RFID.2016.7488002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We describe a novel and practical activity recognition system for dynamic and complex medical settings using only passive RFID technology. Our activity recognition approach is based on the use of objects that are specific for a given activity. The object-use status is detected from RFID data and the activities are predicted from the statuses of use of different objects. We tagged 10 objects in a trauma room of an emergency department and recorded RFID data for 10 actual trauma resuscitations. More than 20,000 seconds of data were collected and used for analysis. The system achieved a 96% overall accuracy with a 0.74 <i>F</i>-score for detecting use of 10 common resuscitation objects and 95% accuracy with a 0.30 F Score for activity recognition of 10 medical activities.</p>\",\"PeriodicalId\":92524,\"journal\":{\"name\":\"IEEE International Conference on RFID. IEEE International Conference on RFID\",\"volume\":\"2016 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/RFID.2016.7488002\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on RFID. IEEE International Conference on RFID\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFID.2016.7488002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/6/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on RFID. IEEE International Conference on RFID","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFID.2016.7488002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/6/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

我们描述了一种新颖实用的活动识别系统,用于动态和复杂的医疗环境,仅使用无源RFID技术。我们的活动识别方法是基于特定于给定活动的对象的使用。从RFID数据中检测物体的使用状态,并根据不同物体的使用状态预测活动。我们在急诊科的创伤室里标记了10个物体,并记录了10个实际创伤复苏的射频识别数据。超过20,000秒的数据被收集并用于分析。该系统在检测10种常见复苏对象的使用方面达到了96%的总体准确率,F值为0.74;在10种医疗活动的活动识别方面达到了95%的准确率,F值为0.30。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Activity Recognition for Medical Teamwork Based on Passive RFID.

We describe a novel and practical activity recognition system for dynamic and complex medical settings using only passive RFID technology. Our activity recognition approach is based on the use of objects that are specific for a given activity. The object-use status is detected from RFID data and the activities are predicted from the statuses of use of different objects. We tagged 10 objects in a trauma room of an emergency department and recorded RFID data for 10 actual trauma resuscitations. More than 20,000 seconds of data were collected and used for analysis. The system achieved a 96% overall accuracy with a 0.74 F-score for detecting use of 10 common resuscitation objects and 95% accuracy with a 0.30 F Score for activity recognition of 10 medical activities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Activity Recognition for Medical Teamwork Based on Passive RFID.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1