用于医疗过程挖掘的面向过程的迭代多重对齐。

Shuhong Chen, Sen Yang, Moliang Zhou, Randall S Burd, Ivan Marsic
{"title":"用于医疗过程挖掘的面向过程的迭代多重对齐。","authors":"Shuhong Chen,&nbsp;Sen Yang,&nbsp;Moliang Zhou,&nbsp;Randall S Burd,&nbsp;Ivan Marsic","doi":"10.1109/ICDMW.2017.63","DOIUrl":null,"url":null,"abstract":"<p><p>Adapted from biological sequence alignment, trace alignment is a process mining technique used to visualize and analyze workflow data. Any analysis done with this method, however, is affected by the alignment quality. The best existing trace alignment techniques use progressive guide-trees to heuristically approximate the optimal alignment in O(N<sup>2</sup>L<sup>2</sup>) time. These algorithms are heavily dependent on the selected guide-tree metric, often return sum-of-pairs-score-reducing errors that interfere with interpretation, and are computationally intensive for large datasets. To alleviate these issues, we propose process-oriented iterative multiple alignment (PIMA), which contains specialized optimizations to better handle workflow data. We demonstrate that PIMA is a flexible framework capable of achieving better sum-of-pairs score than existing trace alignment algorithms in only O(NL<sup>2</sup>) time. We applied PIMA to analyzing medical workflow data, showing how iterative alignment can better represent the data and facilitate the extraction of insights from data visualization.</p>","PeriodicalId":91379,"journal":{"name":"Proceedings ... ICDM workshops. IEEE International Conference on Data Mining","volume":"2017 ","pages":"438-445"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICDMW.2017.63","citationCount":"11","resultStr":"{\"title\":\"Process-oriented Iterative Multiple Alignment for Medical Process Mining.\",\"authors\":\"Shuhong Chen,&nbsp;Sen Yang,&nbsp;Moliang Zhou,&nbsp;Randall S Burd,&nbsp;Ivan Marsic\",\"doi\":\"10.1109/ICDMW.2017.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adapted from biological sequence alignment, trace alignment is a process mining technique used to visualize and analyze workflow data. Any analysis done with this method, however, is affected by the alignment quality. The best existing trace alignment techniques use progressive guide-trees to heuristically approximate the optimal alignment in O(N<sup>2</sup>L<sup>2</sup>) time. These algorithms are heavily dependent on the selected guide-tree metric, often return sum-of-pairs-score-reducing errors that interfere with interpretation, and are computationally intensive for large datasets. To alleviate these issues, we propose process-oriented iterative multiple alignment (PIMA), which contains specialized optimizations to better handle workflow data. We demonstrate that PIMA is a flexible framework capable of achieving better sum-of-pairs score than existing trace alignment algorithms in only O(NL<sup>2</sup>) time. We applied PIMA to analyzing medical workflow data, showing how iterative alignment can better represent the data and facilitate the extraction of insights from data visualization.</p>\",\"PeriodicalId\":91379,\"journal\":{\"name\":\"Proceedings ... ICDM workshops. IEEE International Conference on Data Mining\",\"volume\":\"2017 \",\"pages\":\"438-445\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ICDMW.2017.63\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings ... ICDM workshops. IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2017.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ... ICDM workshops. IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2017.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/12/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

轨迹比对是一种过程挖掘技术,适用于生物序列比对,用于可视化和分析工作流数据。但是,使用此方法进行的任何分析都会受到路线质量的影响。现有的最佳轨迹对准技术使用渐进引导树来启发式地近似O(N2L2)时间内的最佳对准。这些算法在很大程度上依赖于所选的引导树度量,通常返回成对和分数,从而减少干扰解释的错误,并且对于大型数据集来说计算密集。为了缓解这些问题,我们提出了面向过程的迭代多重对齐(PIMA),它包含专门的优化,以更好地处理工作流数据。我们证明了PIMA是一个灵活的框架,能够在仅O(NL2)时间内实现比现有轨迹对齐算法更好的对和分数。我们将PIMA应用于分析医疗工作流程数据,展示了迭代对齐如何更好地表示数据,并促进从数据可视化中提取见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Process-oriented Iterative Multiple Alignment for Medical Process Mining.

Adapted from biological sequence alignment, trace alignment is a process mining technique used to visualize and analyze workflow data. Any analysis done with this method, however, is affected by the alignment quality. The best existing trace alignment techniques use progressive guide-trees to heuristically approximate the optimal alignment in O(N2L2) time. These algorithms are heavily dependent on the selected guide-tree metric, often return sum-of-pairs-score-reducing errors that interfere with interpretation, and are computationally intensive for large datasets. To alleviate these issues, we propose process-oriented iterative multiple alignment (PIMA), which contains specialized optimizations to better handle workflow data. We demonstrate that PIMA is a flexible framework capable of achieving better sum-of-pairs score than existing trace alignment algorithms in only O(NL2) time. We applied PIMA to analyzing medical workflow data, showing how iterative alignment can better represent the data and facilitate the extraction of insights from data visualization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Attention Q-Network for Personalized Treatment Recommendation. Spatio-Temporal Trend Analysis of the Brazilian Elections Based on Twitter Data Process-oriented Iterative Multiple Alignment for Medical Process Mining. Generalized Additive Models from a Neural Network Perspective Data Modeling for Content-Based Support Environment Application on Epilepsy Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1