{"title":"小儿癫痫患者辅助拉科沙胺的人群药代动力学。","authors":"Julia Winkler, Rik Schoemaker, Armel Stockis","doi":"10.1002/jcph.1340","DOIUrl":null,"url":null,"abstract":"<p><p>A pediatric population pharmacokinetic model including covariate effects was developed using data from 2 clinical trials in pediatric patients with epilepsy (SP0847 and SP1047). Lacosamide plasma concentration-time data (n = 402) were available from 79 children with body weights ranging from 6 to 76 kg, and a balanced age distribution (6 months to <2 years: n = 14; 2 to <6 years: n = 22; 6 to <12 years: n = 25; 12 to <18 years: n = 18). A single-compartment population pharmacokinetic model with first-order absorption and elimination described the data adequately. Plasma clearance was modeled using allometric scaling on body weight with a freely estimated allometric exponent, while volume of distribution used a fixed theoretical allometric exponent. Covariate search identified a significant effect of enzyme-inducing antiepileptic drugs resulting in a 35% decrease in lacosamide average plasma concentration. No additional effects on clearance could be attributed to race, sex, age, or renal function. Different dosing adaptation schemes by body weight bands were simulated to approximate, in pediatric patients aged 4 to 17 years, the same average plasma concentration as in adult patients receiving the maximum recommended lacosamide daily dose.</p>","PeriodicalId":48908,"journal":{"name":"Journal of Clinical Pharmacology","volume":"59 4","pages":"541-547"},"PeriodicalIF":2.9000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/jcph.1340","citationCount":"13","resultStr":"{\"title\":\"Population Pharmacokinetics of Adjunctive Lacosamide in Pediatric Patients With Epilepsy.\",\"authors\":\"Julia Winkler, Rik Schoemaker, Armel Stockis\",\"doi\":\"10.1002/jcph.1340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A pediatric population pharmacokinetic model including covariate effects was developed using data from 2 clinical trials in pediatric patients with epilepsy (SP0847 and SP1047). Lacosamide plasma concentration-time data (n = 402) were available from 79 children with body weights ranging from 6 to 76 kg, and a balanced age distribution (6 months to <2 years: n = 14; 2 to <6 years: n = 22; 6 to <12 years: n = 25; 12 to <18 years: n = 18). A single-compartment population pharmacokinetic model with first-order absorption and elimination described the data adequately. Plasma clearance was modeled using allometric scaling on body weight with a freely estimated allometric exponent, while volume of distribution used a fixed theoretical allometric exponent. Covariate search identified a significant effect of enzyme-inducing antiepileptic drugs resulting in a 35% decrease in lacosamide average plasma concentration. No additional effects on clearance could be attributed to race, sex, age, or renal function. Different dosing adaptation schemes by body weight bands were simulated to approximate, in pediatric patients aged 4 to 17 years, the same average plasma concentration as in adult patients receiving the maximum recommended lacosamide daily dose.</p>\",\"PeriodicalId\":48908,\"journal\":{\"name\":\"Journal of Clinical Pharmacology\",\"volume\":\"59 4\",\"pages\":\"541-547\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/jcph.1340\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jcph.1340\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jcph.1340","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/11/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Population Pharmacokinetics of Adjunctive Lacosamide in Pediatric Patients With Epilepsy.
A pediatric population pharmacokinetic model including covariate effects was developed using data from 2 clinical trials in pediatric patients with epilepsy (SP0847 and SP1047). Lacosamide plasma concentration-time data (n = 402) were available from 79 children with body weights ranging from 6 to 76 kg, and a balanced age distribution (6 months to <2 years: n = 14; 2 to <6 years: n = 22; 6 to <12 years: n = 25; 12 to <18 years: n = 18). A single-compartment population pharmacokinetic model with first-order absorption and elimination described the data adequately. Plasma clearance was modeled using allometric scaling on body weight with a freely estimated allometric exponent, while volume of distribution used a fixed theoretical allometric exponent. Covariate search identified a significant effect of enzyme-inducing antiepileptic drugs resulting in a 35% decrease in lacosamide average plasma concentration. No additional effects on clearance could be attributed to race, sex, age, or renal function. Different dosing adaptation schemes by body weight bands were simulated to approximate, in pediatric patients aged 4 to 17 years, the same average plasma concentration as in adult patients receiving the maximum recommended lacosamide daily dose.
期刊介绍:
The Journal of Clinical Pharmacology (JCP) is a Human Pharmacology journal designed to provide physicians, pharmacists, research scientists, regulatory scientists, drug developers and academic colleagues a forum to present research in all aspects of Clinical Pharmacology. This includes original research in pharmacokinetics, pharmacogenetics/pharmacogenomics, pharmacometrics, physiologic based pharmacokinetic modeling, drug interactions, therapeutic drug monitoring, regulatory sciences (including unique methods of data analysis), special population studies, drug development, pharmacovigilance, womens’ health, pediatric pharmacology, and pharmacodynamics. Additionally, JCP publishes review articles, commentaries and educational manuscripts. The Journal also serves as an instrument to disseminate Public Policy statements from the American College of Clinical Pharmacology.