{"title":"神经电流MRI表面线圈最小可检测相位的估计。","authors":"Seyed Mehdi BagheriMofidi","doi":"10.1007/s13246-018-0714-z","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal current magnetic resonance imaging (NC-MRI) is a new method in functional imaging of the brain that could cause the alteration in the phase of magnetic resonance signal. The phase variance is defined as the inverse of the signal to noise ratio (SNR). The intrinsic SNR of the MRI signal is characterized by the coil performance. We evaluated the relation between the geometry and the shape of coils in order to find the minimum detectable change in the signal phase and the possibility of direct detection of neuronal activity by MRI. Full wave equations were solved by the finite element method to calculate the SNR for circular, elliptical, and square shape surface coils. The simulation was repeated for Larmor frequencies of 64 MHz and 85.2 MHz and the coil sizes between 1.5 and 7.5 cm. Relative intrinsic signal to noise ratio (rISNR) of coils with a respect to a selected reference coil and a reference point in the sample was estimated. The circular coil had higher rISNR than other shapes. The increase of the strip width in the coils raised the rISNR 5-20%. For typical imaging parameters, rISNR reference was about 66 which led to a minimum detectable change in MRI signal phase of 0.87° (11.4 nT). It may also be reduced up to tenfold in a 1.5 cm circular coil. Detection of subtle phase signal change due to neuronal activity in surface coils needs a large amount of data acquisition and averaging, but it is intrinsically feasible.</p>","PeriodicalId":55430,"journal":{"name":"Australasian Physical & Engineering Sciences in Medicine","volume":"42 1","pages":"83-90"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13246-018-0714-z","citationCount":"0","resultStr":"{\"title\":\"Estimation of the minimum detectable phase change of surface coil for neural current MRI.\",\"authors\":\"Seyed Mehdi BagheriMofidi\",\"doi\":\"10.1007/s13246-018-0714-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuronal current magnetic resonance imaging (NC-MRI) is a new method in functional imaging of the brain that could cause the alteration in the phase of magnetic resonance signal. The phase variance is defined as the inverse of the signal to noise ratio (SNR). The intrinsic SNR of the MRI signal is characterized by the coil performance. We evaluated the relation between the geometry and the shape of coils in order to find the minimum detectable change in the signal phase and the possibility of direct detection of neuronal activity by MRI. Full wave equations were solved by the finite element method to calculate the SNR for circular, elliptical, and square shape surface coils. The simulation was repeated for Larmor frequencies of 64 MHz and 85.2 MHz and the coil sizes between 1.5 and 7.5 cm. Relative intrinsic signal to noise ratio (rISNR) of coils with a respect to a selected reference coil and a reference point in the sample was estimated. The circular coil had higher rISNR than other shapes. The increase of the strip width in the coils raised the rISNR 5-20%. For typical imaging parameters, rISNR reference was about 66 which led to a minimum detectable change in MRI signal phase of 0.87° (11.4 nT). It may also be reduced up to tenfold in a 1.5 cm circular coil. Detection of subtle phase signal change due to neuronal activity in surface coils needs a large amount of data acquisition and averaging, but it is intrinsically feasible.</p>\",\"PeriodicalId\":55430,\"journal\":{\"name\":\"Australasian Physical & Engineering Sciences in Medicine\",\"volume\":\"42 1\",\"pages\":\"83-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13246-018-0714-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australasian Physical & Engineering Sciences in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-018-0714-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Physical & Engineering Sciences in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13246-018-0714-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/11/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Estimation of the minimum detectable phase change of surface coil for neural current MRI.
Neuronal current magnetic resonance imaging (NC-MRI) is a new method in functional imaging of the brain that could cause the alteration in the phase of magnetic resonance signal. The phase variance is defined as the inverse of the signal to noise ratio (SNR). The intrinsic SNR of the MRI signal is characterized by the coil performance. We evaluated the relation between the geometry and the shape of coils in order to find the minimum detectable change in the signal phase and the possibility of direct detection of neuronal activity by MRI. Full wave equations were solved by the finite element method to calculate the SNR for circular, elliptical, and square shape surface coils. The simulation was repeated for Larmor frequencies of 64 MHz and 85.2 MHz and the coil sizes between 1.5 and 7.5 cm. Relative intrinsic signal to noise ratio (rISNR) of coils with a respect to a selected reference coil and a reference point in the sample was estimated. The circular coil had higher rISNR than other shapes. The increase of the strip width in the coils raised the rISNR 5-20%. For typical imaging parameters, rISNR reference was about 66 which led to a minimum detectable change in MRI signal phase of 0.87° (11.4 nT). It may also be reduced up to tenfold in a 1.5 cm circular coil. Detection of subtle phase signal change due to neuronal activity in surface coils needs a large amount of data acquisition and averaging, but it is intrinsically feasible.
期刊介绍:
Australasian Physical & Engineering Sciences in Medicine (APESM) is a multidisciplinary forum for information and research on the application of physics and engineering to medicine and human physiology. APESM covers a broad range of topics that include but is not limited to:
- Medical physics in radiotherapy
- Medical physics in diagnostic radiology
- Medical physics in nuclear medicine
- Mathematical modelling applied to medicine and human biology
- Clinical biomedical engineering
- Feature extraction, classification of EEG, ECG, EMG, EOG, and other biomedical signals;
- Medical imaging - contributions to new and improved methods;
- Modelling of physiological systems
- Image processing to extract information from images, e.g. fMRI, CT, etc.;
- Biomechanics, especially with applications to orthopaedics.
- Nanotechnology in medicine
APESM offers original reviews, scientific papers, scientific notes, technical papers, educational notes, book reviews and letters to the editor.
APESM is the journal of the Australasian College of Physical Scientists and Engineers in Medicine, and also the official journal of the College of Biomedical Engineers, Engineers Australia and the Asia-Oceania Federation of Organizations for Medical Physics.