神经电流MRI表面线圈最小可检测相位的估计。

Q3 Biochemistry, Genetics and Molecular Biology Australasian Physical & Engineering Sciences in Medicine Pub Date : 2019-03-01 Epub Date: 2018-11-22 DOI:10.1007/s13246-018-0714-z
Seyed Mehdi BagheriMofidi
{"title":"神经电流MRI表面线圈最小可检测相位的估计。","authors":"Seyed Mehdi BagheriMofidi","doi":"10.1007/s13246-018-0714-z","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal current magnetic resonance imaging (NC-MRI) is a new method in functional imaging of the brain that could cause the alteration in the phase of magnetic resonance signal. The phase variance is defined as the inverse of the signal to noise ratio (SNR). The intrinsic SNR of the MRI signal is characterized by the coil performance. We evaluated the relation between the geometry and the shape of coils in order to find the minimum detectable change in the signal phase and the possibility of direct detection of neuronal activity by MRI. Full wave equations were solved by the finite element method to calculate the SNR for circular, elliptical, and square shape surface coils. The simulation was repeated for Larmor frequencies of 64 MHz and 85.2 MHz and the coil sizes between 1.5 and 7.5 cm. Relative intrinsic signal to noise ratio (rISNR) of coils with a respect to a selected reference coil and a reference point in the sample was estimated. The circular coil had higher rISNR than other shapes. The increase of the strip width in the coils raised the rISNR 5-20%. For typical imaging parameters, rISNR reference was about 66 which led to a minimum detectable change in MRI signal phase of 0.87° (11.4 nT). It may also be reduced up to tenfold in a 1.5 cm circular coil. Detection of subtle phase signal change due to neuronal activity in surface coils needs a large amount of data acquisition and averaging, but it is intrinsically feasible.</p>","PeriodicalId":55430,"journal":{"name":"Australasian Physical & Engineering Sciences in Medicine","volume":"42 1","pages":"83-90"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13246-018-0714-z","citationCount":"0","resultStr":"{\"title\":\"Estimation of the minimum detectable phase change of surface coil for neural current MRI.\",\"authors\":\"Seyed Mehdi BagheriMofidi\",\"doi\":\"10.1007/s13246-018-0714-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuronal current magnetic resonance imaging (NC-MRI) is a new method in functional imaging of the brain that could cause the alteration in the phase of magnetic resonance signal. The phase variance is defined as the inverse of the signal to noise ratio (SNR). The intrinsic SNR of the MRI signal is characterized by the coil performance. We evaluated the relation between the geometry and the shape of coils in order to find the minimum detectable change in the signal phase and the possibility of direct detection of neuronal activity by MRI. Full wave equations were solved by the finite element method to calculate the SNR for circular, elliptical, and square shape surface coils. The simulation was repeated for Larmor frequencies of 64 MHz and 85.2 MHz and the coil sizes between 1.5 and 7.5 cm. Relative intrinsic signal to noise ratio (rISNR) of coils with a respect to a selected reference coil and a reference point in the sample was estimated. The circular coil had higher rISNR than other shapes. The increase of the strip width in the coils raised the rISNR 5-20%. For typical imaging parameters, rISNR reference was about 66 which led to a minimum detectable change in MRI signal phase of 0.87° (11.4 nT). It may also be reduced up to tenfold in a 1.5 cm circular coil. Detection of subtle phase signal change due to neuronal activity in surface coils needs a large amount of data acquisition and averaging, but it is intrinsically feasible.</p>\",\"PeriodicalId\":55430,\"journal\":{\"name\":\"Australasian Physical & Engineering Sciences in Medicine\",\"volume\":\"42 1\",\"pages\":\"83-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13246-018-0714-z\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australasian Physical & Engineering Sciences in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-018-0714-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Physical & Engineering Sciences in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13246-018-0714-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/11/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

神经元电流磁共振成像(NC-MRI)是一种新的脑功能成像方法,它可以引起磁共振信号的相位改变。相位方差被定义为信噪比(SNR)的倒数。磁共振成像信号的本征信噪比由线圈的性能表征。我们评估了几何形状和线圈形状之间的关系,以便找到信号相位的最小可检测变化,以及通过MRI直接检测神经元活动的可能性。采用有限元法求解全波方程,计算圆形、椭圆形和方形表面线圈的信噪比。在Larmor频率为64 MHz和85.2 MHz,线圈尺寸在1.5到7.5 cm之间时重复模拟。估计了线圈相对于选定的参考线圈和样本中的参考点的相对固有信噪比(rISNR)。圆形线圈的rISNR高于其他形状。线圈中条带宽度的增加使rISNR提高了5-20%。对于典型成像参数,rISNR参考值约为66,导致MRI信号相位的最小可检测变化为0.87°(11.4 nT)。在1.5厘米的圆形线圈中,它也可以减少到10倍。检测表面线圈中神经元活动引起的细微相位信号变化需要大量的数据采集和平均,但本质上是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of the minimum detectable phase change of surface coil for neural current MRI.

Neuronal current magnetic resonance imaging (NC-MRI) is a new method in functional imaging of the brain that could cause the alteration in the phase of magnetic resonance signal. The phase variance is defined as the inverse of the signal to noise ratio (SNR). The intrinsic SNR of the MRI signal is characterized by the coil performance. We evaluated the relation between the geometry and the shape of coils in order to find the minimum detectable change in the signal phase and the possibility of direct detection of neuronal activity by MRI. Full wave equations were solved by the finite element method to calculate the SNR for circular, elliptical, and square shape surface coils. The simulation was repeated for Larmor frequencies of 64 MHz and 85.2 MHz and the coil sizes between 1.5 and 7.5 cm. Relative intrinsic signal to noise ratio (rISNR) of coils with a respect to a selected reference coil and a reference point in the sample was estimated. The circular coil had higher rISNR than other shapes. The increase of the strip width in the coils raised the rISNR 5-20%. For typical imaging parameters, rISNR reference was about 66 which led to a minimum detectable change in MRI signal phase of 0.87° (11.4 nT). It may also be reduced up to tenfold in a 1.5 cm circular coil. Detection of subtle phase signal change due to neuronal activity in surface coils needs a large amount of data acquisition and averaging, but it is intrinsically feasible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Australasian Physical & Engineering Sciences in Medicine (APESM) is a multidisciplinary forum for information and research on the application of physics and engineering to medicine and human physiology. APESM covers a broad range of topics that include but is not limited to: - Medical physics in radiotherapy - Medical physics in diagnostic radiology - Medical physics in nuclear medicine - Mathematical modelling applied to medicine and human biology - Clinical biomedical engineering - Feature extraction, classification of EEG, ECG, EMG, EOG, and other biomedical signals; - Medical imaging - contributions to new and improved methods; - Modelling of physiological systems - Image processing to extract information from images, e.g. fMRI, CT, etc.; - Biomechanics, especially with applications to orthopaedics. - Nanotechnology in medicine APESM offers original reviews, scientific papers, scientific notes, technical papers, educational notes, book reviews and letters to the editor. APESM is the journal of the Australasian College of Physical Scientists and Engineers in Medicine, and also the official journal of the College of Biomedical Engineers, Engineers Australia and the Asia-Oceania Federation of Organizations for Medical Physics.
期刊最新文献
Acknowledgment of Reviewers for Volume 35 Acknowledgment of Reviewers for Volume 34 A comparison between EPSON V700 and EPSON V800 scanners for film dosimetry. Nanodosimetric understanding to the dependence of the relationship between dose-averaged lineal energy on nanoscale and LET on ion species. EPSM 2019, Engineering and Physical Sciences in Medicine : 28-30 October 2019, Perth, Australia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1