{"title":"[合成细菌病毒的产生]。","authors":"Hiroki Ando","doi":"10.3412/jsb.73.201","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria are closely related with human health and diseases. For example, the emergence of drug-resistant bacteria is a serious problem in the world. Studying the human microbiome shows its important role for our health. But we have very limited tools to edit bacterial population. Antibiotics are generally broad-spectrum and unable to kill only bad bacteria. The natural enemies of bacteria, called bacteriophage (phage), have highly specific host range, and thus promising candidates for targeted bacterial population editing. However, isolation and characterization of natural phages can be a time-, labor- and cost-intensive way. Also, developing phage-based therapeutics and diagnostics is limited by the difficulty of engineering phages. Here, I describe a phage genome-engineering platform and synthetic phages with tunable host ranges to overcome these challenges.</p>","PeriodicalId":19308,"journal":{"name":"Nihon saikingaku zasshi. Japanese journal of bacteriology","volume":"73 4","pages":"201-210"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3412/jsb.73.201","citationCount":"0","resultStr":"{\"title\":\"[Creation of synthetic bacterial viruses].\",\"authors\":\"Hiroki Ando\",\"doi\":\"10.3412/jsb.73.201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacteria are closely related with human health and diseases. For example, the emergence of drug-resistant bacteria is a serious problem in the world. Studying the human microbiome shows its important role for our health. But we have very limited tools to edit bacterial population. Antibiotics are generally broad-spectrum and unable to kill only bad bacteria. The natural enemies of bacteria, called bacteriophage (phage), have highly specific host range, and thus promising candidates for targeted bacterial population editing. However, isolation and characterization of natural phages can be a time-, labor- and cost-intensive way. Also, developing phage-based therapeutics and diagnostics is limited by the difficulty of engineering phages. Here, I describe a phage genome-engineering platform and synthetic phages with tunable host ranges to overcome these challenges.</p>\",\"PeriodicalId\":19308,\"journal\":{\"name\":\"Nihon saikingaku zasshi. Japanese journal of bacteriology\",\"volume\":\"73 4\",\"pages\":\"201-210\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3412/jsb.73.201\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nihon saikingaku zasshi. Japanese journal of bacteriology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3412/jsb.73.201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nihon saikingaku zasshi. Japanese journal of bacteriology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3412/jsb.73.201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bacteria are closely related with human health and diseases. For example, the emergence of drug-resistant bacteria is a serious problem in the world. Studying the human microbiome shows its important role for our health. But we have very limited tools to edit bacterial population. Antibiotics are generally broad-spectrum and unable to kill only bad bacteria. The natural enemies of bacteria, called bacteriophage (phage), have highly specific host range, and thus promising candidates for targeted bacterial population editing. However, isolation and characterization of natural phages can be a time-, labor- and cost-intensive way. Also, developing phage-based therapeutics and diagnostics is limited by the difficulty of engineering phages. Here, I describe a phage genome-engineering platform and synthetic phages with tunable host ranges to overcome these challenges.