Chi Hong Sum, Samantha Marisha Shortall, Jessica Antoinetta Nicastro, Roderick Slavcev
{"title":"成像专用系统。","authors":"Chi Hong Sum, Samantha Marisha Shortall, Jessica Antoinetta Nicastro, Roderick Slavcev","doi":"10.1007/978-3-319-78259-1_3","DOIUrl":null,"url":null,"abstract":"<p><p>Microscopy allows for the characterization of small objects invisible to the naked eye, a technique that, since its conception, has played a key role in the development across nearly every field of science and technology. Given the nanometer size of the materials explored in the field of nanotechnology, the contributions of modern microscopes that can visualize these materials are indispensable, and the ever-improving technology is paramount to the future success of the field. This chapter will focus on four fundamental areas of microscopy used in the field of nanotechnology including fluorescence microscopy (Sect. 3.1), particle tracking and photoactivated localization microscopy (Sect. 3.2), quantum dots and fluorescence resonance energy transfer (Sect. 3.3), and cellular MRI and PET labeling (Sect. 3.4). The functionality, as well as the current and recommended usage of each given imaging system, will be discussed.</p>","PeriodicalId":36906,"journal":{"name":"Experientia supplementum (2012)","volume":"110 ","pages":"69-97"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-78259-1_3","citationCount":"0","resultStr":"{\"title\":\"Specific Systems for Imaging.\",\"authors\":\"Chi Hong Sum, Samantha Marisha Shortall, Jessica Antoinetta Nicastro, Roderick Slavcev\",\"doi\":\"10.1007/978-3-319-78259-1_3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microscopy allows for the characterization of small objects invisible to the naked eye, a technique that, since its conception, has played a key role in the development across nearly every field of science and technology. Given the nanometer size of the materials explored in the field of nanotechnology, the contributions of modern microscopes that can visualize these materials are indispensable, and the ever-improving technology is paramount to the future success of the field. This chapter will focus on four fundamental areas of microscopy used in the field of nanotechnology including fluorescence microscopy (Sect. 3.1), particle tracking and photoactivated localization microscopy (Sect. 3.2), quantum dots and fluorescence resonance energy transfer (Sect. 3.3), and cellular MRI and PET labeling (Sect. 3.4). The functionality, as well as the current and recommended usage of each given imaging system, will be discussed.</p>\",\"PeriodicalId\":36906,\"journal\":{\"name\":\"Experientia supplementum (2012)\",\"volume\":\"110 \",\"pages\":\"69-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/978-3-319-78259-1_3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experientia supplementum (2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-319-78259-1_3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experientia supplementum (2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-78259-1_3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Microscopy allows for the characterization of small objects invisible to the naked eye, a technique that, since its conception, has played a key role in the development across nearly every field of science and technology. Given the nanometer size of the materials explored in the field of nanotechnology, the contributions of modern microscopes that can visualize these materials are indispensable, and the ever-improving technology is paramount to the future success of the field. This chapter will focus on four fundamental areas of microscopy used in the field of nanotechnology including fluorescence microscopy (Sect. 3.1), particle tracking and photoactivated localization microscopy (Sect. 3.2), quantum dots and fluorescence resonance energy transfer (Sect. 3.3), and cellular MRI and PET labeling (Sect. 3.4). The functionality, as well as the current and recommended usage of each given imaging system, will be discussed.