Upendra K. Sharma , Guilong Tian , Leonid G. Voskressensky , Erik V. Van der Eycken
{"title":"金催化的后mcr转化为复杂(多)杂环","authors":"Upendra K. Sharma , Guilong Tian , Leonid G. Voskressensky , Erik V. Van der Eycken","doi":"10.1016/j.ddtec.2018.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Post multicomponent reaction (MCR) transformations are one of the most successful methods leading to high structural diversity and molecular complexity. A well-known MCR, the Ugi reaction typically affords a linear peptide backbone, enabling post-Ugi transformations as an elegant solution to rigidify the Ugi adduct into more drug-like species. Not surprisingly, the development of such transformations leading to new structural frameworks has expanded rapidly over the last few years. These reactions have reached an impressive level of performance and versatility, particularly in amalgamation with gold catalysis. This review outlines the developments achieved in the past decade, highlighting the modifications that are performed in a sequential or domino fashion with emphasis on major concepts, synthetic applications of the derived products as well as mechanistic aspects.</p></div>","PeriodicalId":36012,"journal":{"name":"Drug Discovery Today: Technologies","volume":"29 ","pages":"Pages 61-69"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddtec.2018.08.003","citationCount":"13","resultStr":"{\"title\":\"Gold-catalyzed post-MCR transformations towards complex (poly)heterocycles\",\"authors\":\"Upendra K. Sharma , Guilong Tian , Leonid G. Voskressensky , Erik V. Van der Eycken\",\"doi\":\"10.1016/j.ddtec.2018.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Post multicomponent reaction (MCR) transformations are one of the most successful methods leading to high structural diversity and molecular complexity. A well-known MCR, the Ugi reaction typically affords a linear peptide backbone, enabling post-Ugi transformations as an elegant solution to rigidify the Ugi adduct into more drug-like species. Not surprisingly, the development of such transformations leading to new structural frameworks has expanded rapidly over the last few years. These reactions have reached an impressive level of performance and versatility, particularly in amalgamation with gold catalysis. This review outlines the developments achieved in the past decade, highlighting the modifications that are performed in a sequential or domino fashion with emphasis on major concepts, synthetic applications of the derived products as well as mechanistic aspects.</p></div>\",\"PeriodicalId\":36012,\"journal\":{\"name\":\"Drug Discovery Today: Technologies\",\"volume\":\"29 \",\"pages\":\"Pages 61-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddtec.2018.08.003\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today: Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1740674918300064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740674918300064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Gold-catalyzed post-MCR transformations towards complex (poly)heterocycles
Post multicomponent reaction (MCR) transformations are one of the most successful methods leading to high structural diversity and molecular complexity. A well-known MCR, the Ugi reaction typically affords a linear peptide backbone, enabling post-Ugi transformations as an elegant solution to rigidify the Ugi adduct into more drug-like species. Not surprisingly, the development of such transformations leading to new structural frameworks has expanded rapidly over the last few years. These reactions have reached an impressive level of performance and versatility, particularly in amalgamation with gold catalysis. This review outlines the developments achieved in the past decade, highlighting the modifications that are performed in a sequential or domino fashion with emphasis on major concepts, synthetic applications of the derived products as well as mechanistic aspects.
期刊介绍:
Discovery Today: Technologies compares different technological tools and techniques used from the discovery of new drug targets through to the launch of new medicines.