通过数据分析、建模和降维技术优化化学分组和吸附剂材料设计。

Melis Onel, Burcu Beykal, Meichen Wang, Fabian A Grimm, Lan Zhou, Fred A Wright, Timothy D Phillips, Ivan Rusyn, Efstratios N Pistikopoulos
{"title":"通过数据分析、建模和降维技术优化化学分组和吸附剂材料设计。","authors":"Melis Onel, Burcu Beykal, Meichen Wang, Fabian A Grimm, Lan Zhou, Fred A Wright, Timothy D Phillips, Ivan Rusyn, Efstratios N Pistikopoulos","doi":"10.1016/B978-0-444-64235-6.50076-0","DOIUrl":null,"url":null,"abstract":"<p><p>The ultimate goal of the Texas A&M Superfund program is to develop comprehensive tools and models for addressing exposure to chemical mixtures during environmental emergency-related contamination events. With that goal, we aim to design a framework for optimal grouping of chemical mixtures based on their chemical characteristics and bioactivity properties, and facilitate comparative assessment of their human health impacts through read-across. The optimal clustering of the chemical mixtures guides the selection of sorption material in such a way that the adverse health effects of each group are mitigated. Here, we perform (i) hierarchical clustering of complex substances using chemical and biological data, and (ii) predictive modeling of the sorption activity of broad-acting materials via regression techniques. Dimensionality reduction techniques are also incorporated to further improve the results. We adopt several recent examples of chemical substances of Unknown or Variable composition Complex reaction products and Biological materials (UVCB) as benchmark complex substances, where the grouping of them is optimized by maximizing the Fowlkes-Mallows (FM) index. The effect of clustering method and different visualization techniques are shown to influence the communication of the groupings for read-across.</p>","PeriodicalId":72950,"journal":{"name":"ESCAPE. European Symposium on Computer Aided Process Engineering","volume":"43 ","pages":"421-426"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284807/pdf/nihms-989329.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimal Chemical Grouping and Sorbent Material Design by Data Analysis, Modeling and Dimensionality Reduction Techniques.\",\"authors\":\"Melis Onel, Burcu Beykal, Meichen Wang, Fabian A Grimm, Lan Zhou, Fred A Wright, Timothy D Phillips, Ivan Rusyn, Efstratios N Pistikopoulos\",\"doi\":\"10.1016/B978-0-444-64235-6.50076-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ultimate goal of the Texas A&M Superfund program is to develop comprehensive tools and models for addressing exposure to chemical mixtures during environmental emergency-related contamination events. With that goal, we aim to design a framework for optimal grouping of chemical mixtures based on their chemical characteristics and bioactivity properties, and facilitate comparative assessment of their human health impacts through read-across. The optimal clustering of the chemical mixtures guides the selection of sorption material in such a way that the adverse health effects of each group are mitigated. Here, we perform (i) hierarchical clustering of complex substances using chemical and biological data, and (ii) predictive modeling of the sorption activity of broad-acting materials via regression techniques. Dimensionality reduction techniques are also incorporated to further improve the results. We adopt several recent examples of chemical substances of Unknown or Variable composition Complex reaction products and Biological materials (UVCB) as benchmark complex substances, where the grouping of them is optimized by maximizing the Fowlkes-Mallows (FM) index. The effect of clustering method and different visualization techniques are shown to influence the communication of the groupings for read-across.</p>\",\"PeriodicalId\":72950,\"journal\":{\"name\":\"ESCAPE. European Symposium on Computer Aided Process Engineering\",\"volume\":\"43 \",\"pages\":\"421-426\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284807/pdf/nihms-989329.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESCAPE. European Symposium on Computer Aided Process Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/B978-0-444-64235-6.50076-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESCAPE. European Symposium on Computer Aided Process Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/B978-0-444-64235-6.50076-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

德克萨斯农工大学超级基金项目的最终目标是开发综合工具和模型,以解决在环境紧急污染事件中接触化学混合物的问题。为了实现这一目标,我们旨在设计一个框架,根据化学混合物的化学特征和生物活性特性对其进行优化分组,并通过交叉阅读的方式促进对其对人类健康影响的比较评估。化学混合物的优化分组可指导吸附材料的选择,从而减轻每组化学混合物对健康的不利影响。在此,我们利用化学和生物数据对复杂物质进行了(i)分层聚类,以及(ii)通过回归技术对广效材料的吸附活性进行预测建模。此外,我们还采用了降维技术来进一步改进结果。我们采用了几种最新的未知或成分可变的化学物质、复杂反应产物和生物材料(UVCB)作为基准复杂物质,通过最大化 Fowlkes-Mallows (FM) 指数对它们进行优化分组。聚类方法和不同的可视化技术对分组沟通的影响已被证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Chemical Grouping and Sorbent Material Design by Data Analysis, Modeling and Dimensionality Reduction Techniques.

The ultimate goal of the Texas A&M Superfund program is to develop comprehensive tools and models for addressing exposure to chemical mixtures during environmental emergency-related contamination events. With that goal, we aim to design a framework for optimal grouping of chemical mixtures based on their chemical characteristics and bioactivity properties, and facilitate comparative assessment of their human health impacts through read-across. The optimal clustering of the chemical mixtures guides the selection of sorption material in such a way that the adverse health effects of each group are mitigated. Here, we perform (i) hierarchical clustering of complex substances using chemical and biological data, and (ii) predictive modeling of the sorption activity of broad-acting materials via regression techniques. Dimensionality reduction techniques are also incorporated to further improve the results. We adopt several recent examples of chemical substances of Unknown or Variable composition Complex reaction products and Biological materials (UVCB) as benchmark complex substances, where the grouping of them is optimized by maximizing the Fowlkes-Mallows (FM) index. The effect of clustering method and different visualization techniques are shown to influence the communication of the groupings for read-across.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Binary Classification of the Endocrine Disrupting Chemicals by Artificial Neural Networks. Continuous-Time Surrogate Models for Data-Driven Dynamic Optimization. Development of mechanistic reduced order models (ROMs)for glidant and lubricant effects in continuous manufacturing of pharmaceutical solid-dosage forms. Development of a Virtual Sensor for Real-Time Prediction of Granule Flow Properties. A Hierarchical Approach to Monitoring Control Performance and Plant-Model Mismatch.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1