潜伏病毒破坏HIF-1和p53之间限制p300/CBP的竞争如何导致疾病。

Q2 Biochemistry, Genetics and Molecular Biology Genes and Cancer Pub Date : 2018-05-01 DOI:10.18632/genesandcancer.178
Hanan Polansky, Hava Schwab
{"title":"潜伏病毒破坏HIF-1和p53之间限制p300/CBP的竞争如何导致疾病。","authors":"Hanan Polansky, Hava Schwab","doi":"10.18632/genesandcancer.178","DOIUrl":null,"url":null,"abstract":"CBP and p300 are considered the most heavily connected coactivators in the mammalian protein-protein interaction network [1] with at least 315 different cellular and viral interacting partners [2]. CBP and p300 are histone acetyltransferases that control the transcription of numerous genes in humans, viruses, and other species. CBP/p300 is a 300 kDa protein that has a CH2 domain, which contains its acetyltransferase activity, and five binding domains [3]. Although two separate genes encode CBP and p300, they share a 61% sequence identity, and are often mentioned together as CBP/p300 [3]. Many studies showed that competition for the limiting CBP/p300 is an important mechanism used by the cell to regulate transcription and cellular behavior. This commentary discusses two of these studies [4] [5] and connects the observations reported in these studies to the Microcompetition Model. HIF-1α, a subunit of the hypoxia-inducible factor-1 (HIF-1) transcription factor, is regulated in an oxygendependent manner. Under normal oxygen conditions it is inactive and made at low levels. Under hypoxic conditions, it is stabilized and activated. The tumor suppressor p53 is another protein that is active under hypoxic conditions. Using differential equations and a dimensionless state variable, Zhou et al. [4] determined the effect of p300 on the steady-state concentrations of proteins. They discovered that under hypoxic conditions HIF-1α and tumor suppressor p53 compete for binding to the coactivator p300. They showed that the co-activator p300 is required for full transcriptional activity of both p53 and HIF-1. According to Zhou et al., this competition indicates that p300 is limiting. To investigate the cross-talk between HIF-1α and p53, Ruas et al. [5] performed ChIP analyses to examine the recruitment of CBP to HIF-1α and p53 target gene promoters under hypoxic conditions. The results of the ChIP analyses showed that under this condition the levels of CBP on target gene promoters are reduced compared to the maximum binding levels. Based on these results, Ruas et al. concluded that CBP/p300 is limiting, and that HIF-1α and p53 compete for recruitment of the limiting amounts of CBP/p300 to their target gene promoters, and that this competition affects the transcription of these genes. These studies showed that competition between the cellular transcription factors HIF-1α and p53 for binding the limiting p300 is an important regulator of transcription. According to the Microcompetition Model, a disruption of this regulation can cause many diseases. The Microcompetition Model was first described in the book ‘Microcompetition with Foreign DNA and the Origin of Chronic Disease.’ [6][7] The model centers on one type of disruption of this regulation caused by viruses that include the strong cis-regulatory element found their promoters/enhancers called the N-box. This element binds the cellular p300•GABP transcription complex during the latent phase. Some common viruses that include an N-box are the Cytomegalovirus (CMV), Epstein-Barr virus (EBV), Herpes Simplex Virus 1 (HSV1), Human T-cell lymphotropic virus (HTLV), and Human Immunodeficiency Virus (HIV). Since p300 is limiting, the p300•GABP complex is limiting. Therefore, the viral N-boxes decrease the availability of p300•GABP in the cell. The result is abnormal expression of the cellular genes that also bind the transcription complex. Those genes that are transactivated by the p300•GABP complex synthesize fewer proteins, while those that are transrepressed by the complex synthesize more proteins. The abnormal levels of these cellular proteins can cause diseases, including cancer, diabetes, atherosclerosis, and obesity. In the book, there is a list of many human genes that bind the p300•GABP complex, and evidence that shows that these genes express abnormal levels of their proteins in these diseases, as suggested by the model.","PeriodicalId":38987,"journal":{"name":"Genes and Cancer","volume":"9 5-6","pages":"153-154"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305108/pdf/","citationCount":"4","resultStr":"{\"title\":\"How a disruption of the competition between HIF-1 and p53 for limiting p300/CBP by latent viruses can cause disease.\",\"authors\":\"Hanan Polansky, Hava Schwab\",\"doi\":\"10.18632/genesandcancer.178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CBP and p300 are considered the most heavily connected coactivators in the mammalian protein-protein interaction network [1] with at least 315 different cellular and viral interacting partners [2]. CBP and p300 are histone acetyltransferases that control the transcription of numerous genes in humans, viruses, and other species. CBP/p300 is a 300 kDa protein that has a CH2 domain, which contains its acetyltransferase activity, and five binding domains [3]. Although two separate genes encode CBP and p300, they share a 61% sequence identity, and are often mentioned together as CBP/p300 [3]. Many studies showed that competition for the limiting CBP/p300 is an important mechanism used by the cell to regulate transcription and cellular behavior. This commentary discusses two of these studies [4] [5] and connects the observations reported in these studies to the Microcompetition Model. HIF-1α, a subunit of the hypoxia-inducible factor-1 (HIF-1) transcription factor, is regulated in an oxygendependent manner. Under normal oxygen conditions it is inactive and made at low levels. Under hypoxic conditions, it is stabilized and activated. The tumor suppressor p53 is another protein that is active under hypoxic conditions. Using differential equations and a dimensionless state variable, Zhou et al. [4] determined the effect of p300 on the steady-state concentrations of proteins. They discovered that under hypoxic conditions HIF-1α and tumor suppressor p53 compete for binding to the coactivator p300. They showed that the co-activator p300 is required for full transcriptional activity of both p53 and HIF-1. According to Zhou et al., this competition indicates that p300 is limiting. To investigate the cross-talk between HIF-1α and p53, Ruas et al. [5] performed ChIP analyses to examine the recruitment of CBP to HIF-1α and p53 target gene promoters under hypoxic conditions. The results of the ChIP analyses showed that under this condition the levels of CBP on target gene promoters are reduced compared to the maximum binding levels. Based on these results, Ruas et al. concluded that CBP/p300 is limiting, and that HIF-1α and p53 compete for recruitment of the limiting amounts of CBP/p300 to their target gene promoters, and that this competition affects the transcription of these genes. These studies showed that competition between the cellular transcription factors HIF-1α and p53 for binding the limiting p300 is an important regulator of transcription. According to the Microcompetition Model, a disruption of this regulation can cause many diseases. The Microcompetition Model was first described in the book ‘Microcompetition with Foreign DNA and the Origin of Chronic Disease.’ [6][7] The model centers on one type of disruption of this regulation caused by viruses that include the strong cis-regulatory element found their promoters/enhancers called the N-box. This element binds the cellular p300•GABP transcription complex during the latent phase. Some common viruses that include an N-box are the Cytomegalovirus (CMV), Epstein-Barr virus (EBV), Herpes Simplex Virus 1 (HSV1), Human T-cell lymphotropic virus (HTLV), and Human Immunodeficiency Virus (HIV). Since p300 is limiting, the p300•GABP complex is limiting. Therefore, the viral N-boxes decrease the availability of p300•GABP in the cell. The result is abnormal expression of the cellular genes that also bind the transcription complex. Those genes that are transactivated by the p300•GABP complex synthesize fewer proteins, while those that are transrepressed by the complex synthesize more proteins. The abnormal levels of these cellular proteins can cause diseases, including cancer, diabetes, atherosclerosis, and obesity. In the book, there is a list of many human genes that bind the p300•GABP complex, and evidence that shows that these genes express abnormal levels of their proteins in these diseases, as suggested by the model.\",\"PeriodicalId\":38987,\"journal\":{\"name\":\"Genes and Cancer\",\"volume\":\"9 5-6\",\"pages\":\"153-154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6305108/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes and Cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/genesandcancer.178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/genesandcancer.178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 4
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How a disruption of the competition between HIF-1 and p53 for limiting p300/CBP by latent viruses can cause disease.
CBP and p300 are considered the most heavily connected coactivators in the mammalian protein-protein interaction network [1] with at least 315 different cellular and viral interacting partners [2]. CBP and p300 are histone acetyltransferases that control the transcription of numerous genes in humans, viruses, and other species. CBP/p300 is a 300 kDa protein that has a CH2 domain, which contains its acetyltransferase activity, and five binding domains [3]. Although two separate genes encode CBP and p300, they share a 61% sequence identity, and are often mentioned together as CBP/p300 [3]. Many studies showed that competition for the limiting CBP/p300 is an important mechanism used by the cell to regulate transcription and cellular behavior. This commentary discusses two of these studies [4] [5] and connects the observations reported in these studies to the Microcompetition Model. HIF-1α, a subunit of the hypoxia-inducible factor-1 (HIF-1) transcription factor, is regulated in an oxygendependent manner. Under normal oxygen conditions it is inactive and made at low levels. Under hypoxic conditions, it is stabilized and activated. The tumor suppressor p53 is another protein that is active under hypoxic conditions. Using differential equations and a dimensionless state variable, Zhou et al. [4] determined the effect of p300 on the steady-state concentrations of proteins. They discovered that under hypoxic conditions HIF-1α and tumor suppressor p53 compete for binding to the coactivator p300. They showed that the co-activator p300 is required for full transcriptional activity of both p53 and HIF-1. According to Zhou et al., this competition indicates that p300 is limiting. To investigate the cross-talk between HIF-1α and p53, Ruas et al. [5] performed ChIP analyses to examine the recruitment of CBP to HIF-1α and p53 target gene promoters under hypoxic conditions. The results of the ChIP analyses showed that under this condition the levels of CBP on target gene promoters are reduced compared to the maximum binding levels. Based on these results, Ruas et al. concluded that CBP/p300 is limiting, and that HIF-1α and p53 compete for recruitment of the limiting amounts of CBP/p300 to their target gene promoters, and that this competition affects the transcription of these genes. These studies showed that competition between the cellular transcription factors HIF-1α and p53 for binding the limiting p300 is an important regulator of transcription. According to the Microcompetition Model, a disruption of this regulation can cause many diseases. The Microcompetition Model was first described in the book ‘Microcompetition with Foreign DNA and the Origin of Chronic Disease.’ [6][7] The model centers on one type of disruption of this regulation caused by viruses that include the strong cis-regulatory element found their promoters/enhancers called the N-box. This element binds the cellular p300•GABP transcription complex during the latent phase. Some common viruses that include an N-box are the Cytomegalovirus (CMV), Epstein-Barr virus (EBV), Herpes Simplex Virus 1 (HSV1), Human T-cell lymphotropic virus (HTLV), and Human Immunodeficiency Virus (HIV). Since p300 is limiting, the p300•GABP complex is limiting. Therefore, the viral N-boxes decrease the availability of p300•GABP in the cell. The result is abnormal expression of the cellular genes that also bind the transcription complex. Those genes that are transactivated by the p300•GABP complex synthesize fewer proteins, while those that are transrepressed by the complex synthesize more proteins. The abnormal levels of these cellular proteins can cause diseases, including cancer, diabetes, atherosclerosis, and obesity. In the book, there is a list of many human genes that bind the p300•GABP complex, and evidence that shows that these genes express abnormal levels of their proteins in these diseases, as suggested by the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes and Cancer
Genes and Cancer Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.90
自引率
0.00%
发文量
6
期刊最新文献
Analysis of pathogenic variants in retinoblastoma reveals a potential gain of function mutation. Dialyl-sulfide with trans-chalcone prevent breast cancer prohibiting SULT1E1 malregulations and oxidant-stress induced HIF1a-MMPs induction. Inhibitory effect of miR-377 on the proliferative and invasive behaviors of prostate cancer cells through the modulation of MYC mRNA via its interaction with BCL-2/Bax, PTEN, and CDK4. Roles of USP1 in Ewing sarcoma. Mechanistically based blood proteomic markers in the TGF-β pathway stratify risk of hepatocellular cancer in patients with cirrhosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1