兽医领域的微生物技术:现状与未来展望

Mai Hamed Hanafy
{"title":"兽医领域的微生物技术:现状与未来展望","authors":"Mai Hamed Hanafy","doi":"10.1016/j.ijvsm.2018.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>Nanotechnology is no longer a concept or a theory of the new world, it has turned into a new enabling technology over the years, with tremendous potential to revolutionize agriculture and livestock sector all over the globe. Moreover, nanotechnology provides new tools for molecular and cellular biology, biotechnology, veterinary physiology and reproduction, giving more promising solutions in both pathogen detection and therapy, engineering of agriculture, incredible results in animal and food systems and many more. Nanotechnology means manipulation, reduction and synthesis of materials at nano scale. Nanoparticles have distinct unique morphological characteristics which are quite different from their original bulk form. Recently, nanoparticles have been produced by industries for commercial applications having huge benefits. Since nanotechnology serves various fields of science and technology, the fabrication of nanoparticles using the biological route is becoming the need of the day. Biosynthesis of nanoparticles attracts the attentions of many researchers and industries to study microorganisms such as bacteria, fungi, algae and others as perfect biological factories for the fabrication of different nanoparticles. Among the different bionanofactories, the fungal system has emerged as an efficient most suitable system synthesizing metal nanoparticles by different mechanisms and for many reasons mentioned later. This review highlights the term “Myconanotechnology” in an attempt to direct more attention on fungi as a potential effective green approach in nanotechnology through conducting a SWOT analysis consisting of strengths, weaknesses, future opportunities of myconanosynthesis and probable constraints through eliciting questions for the possibility of using them in a large scale production.</p></div>","PeriodicalId":45744,"journal":{"name":"International Journal of Veterinary Science and Medicine","volume":"6 2","pages":"Pages 270-273"},"PeriodicalIF":2.8000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ijvsm.2018.11.003","citationCount":"10","resultStr":"{\"title\":\"Myconanotechnology in veterinary sector: Status quo and future perspectives\",\"authors\":\"Mai Hamed Hanafy\",\"doi\":\"10.1016/j.ijvsm.2018.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nanotechnology is no longer a concept or a theory of the new world, it has turned into a new enabling technology over the years, with tremendous potential to revolutionize agriculture and livestock sector all over the globe. Moreover, nanotechnology provides new tools for molecular and cellular biology, biotechnology, veterinary physiology and reproduction, giving more promising solutions in both pathogen detection and therapy, engineering of agriculture, incredible results in animal and food systems and many more. Nanotechnology means manipulation, reduction and synthesis of materials at nano scale. Nanoparticles have distinct unique morphological characteristics which are quite different from their original bulk form. Recently, nanoparticles have been produced by industries for commercial applications having huge benefits. Since nanotechnology serves various fields of science and technology, the fabrication of nanoparticles using the biological route is becoming the need of the day. Biosynthesis of nanoparticles attracts the attentions of many researchers and industries to study microorganisms such as bacteria, fungi, algae and others as perfect biological factories for the fabrication of different nanoparticles. Among the different bionanofactories, the fungal system has emerged as an efficient most suitable system synthesizing metal nanoparticles by different mechanisms and for many reasons mentioned later. This review highlights the term “Myconanotechnology” in an attempt to direct more attention on fungi as a potential effective green approach in nanotechnology through conducting a SWOT analysis consisting of strengths, weaknesses, future opportunities of myconanosynthesis and probable constraints through eliciting questions for the possibility of using them in a large scale production.</p></div>\",\"PeriodicalId\":45744,\"journal\":{\"name\":\"International Journal of Veterinary Science and Medicine\",\"volume\":\"6 2\",\"pages\":\"Pages 270-273\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ijvsm.2018.11.003\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Veterinary Science and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2314459918301364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Veterinary Science and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2314459918301364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 10

摘要

纳米技术不再是新世界的概念或理论,多年来它已经变成了一种新的使能技术,具有巨大的潜力,可以彻底改变全球的农业和畜牧业。此外,纳米技术为分子和细胞生物学、生物技术、兽医生理学和生殖提供了新的工具,在病原体检测和治疗、农业工程、动物和食品系统等方面提供了更有前途的解决方案。纳米技术意味着在纳米尺度上操纵、还原和合成材料。纳米颗粒具有明显独特的形态特征,与原始体积形态有很大不同。最近,纳米颗粒已经被工业生产用于商业应用,具有巨大的效益。由于纳米技术服务于各个科学和技术领域,利用生物途径制造纳米粒子正成为当今的需要。纳米粒子的生物合成引起了许多研究人员和工业界的关注,他们将细菌、真菌、藻类等微生物作为制造不同纳米粒子的理想生物工厂。在不同的生物纳米工厂中,真菌系统由于不同的机制和后面提到的许多原因而成为合成金属纳米颗粒的最有效的系统。这篇综述强调了“真菌合成技术”这一术语,试图通过SWOT分析来引导人们更多地关注真菌作为纳米技术中潜在的有效绿色方法,包括真菌合成的优势、劣势、未来的机会和可能的限制,并提出了在大规模生产中使用真菌的可能性的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Myconanotechnology in veterinary sector: Status quo and future perspectives

Nanotechnology is no longer a concept or a theory of the new world, it has turned into a new enabling technology over the years, with tremendous potential to revolutionize agriculture and livestock sector all over the globe. Moreover, nanotechnology provides new tools for molecular and cellular biology, biotechnology, veterinary physiology and reproduction, giving more promising solutions in both pathogen detection and therapy, engineering of agriculture, incredible results in animal and food systems and many more. Nanotechnology means manipulation, reduction and synthesis of materials at nano scale. Nanoparticles have distinct unique morphological characteristics which are quite different from their original bulk form. Recently, nanoparticles have been produced by industries for commercial applications having huge benefits. Since nanotechnology serves various fields of science and technology, the fabrication of nanoparticles using the biological route is becoming the need of the day. Biosynthesis of nanoparticles attracts the attentions of many researchers and industries to study microorganisms such as bacteria, fungi, algae and others as perfect biological factories for the fabrication of different nanoparticles. Among the different bionanofactories, the fungal system has emerged as an efficient most suitable system synthesizing metal nanoparticles by different mechanisms and for many reasons mentioned later. This review highlights the term “Myconanotechnology” in an attempt to direct more attention on fungi as a potential effective green approach in nanotechnology through conducting a SWOT analysis consisting of strengths, weaknesses, future opportunities of myconanosynthesis and probable constraints through eliciting questions for the possibility of using them in a large scale production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
12
审稿时长
24 weeks
期刊最新文献
Monocephalus dipygus in a 4-month-old mixed-breed puppy: clinical, radiographic, ultrasonographic, karyotyping and surgical intervention. Dual effects of ipecac alkaloids with potent antiviral activity against foot-and-mouth disease virus as replicase inhibitors and direct virucides. Investigation of Fasciola gigantica in freshwater snail Radix (Lymnaea) spp. In the highly parasite-prevalent area of Nakhon Ratchasima Province, Thailand. Microstructural architecture of the bony scutes, spine, and rays of the bony fins in the common pleco (Hypostomus plecostomus). Seroprevalence and molecular detection of Brucella infection in livestock in the United Arab Emirates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1