评估化学物质内分泌干扰潜能的计算预测模型。

Q2 Biochemistry, Genetics and Molecular Biology Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews Pub Date : 2018-01-01 Epub Date: 2019-01-11 DOI:10.1080/10590501.2018.1537132
Sugunadevi Sakkiah, Wenjing Guo, Bohu Pan, Rebecca Kusko, Weida Tong, Huixiao Hong
{"title":"评估化学物质内分泌干扰潜能的计算预测模型。","authors":"Sugunadevi Sakkiah,&nbsp;Wenjing Guo,&nbsp;Bohu Pan,&nbsp;Rebecca Kusko,&nbsp;Weida Tong,&nbsp;Huixiao Hong","doi":"10.1080/10590501.2018.1537132","DOIUrl":null,"url":null,"abstract":"<p><p>Endocrine disrupting chemicals (EDCs) mimic natural hormones and disrupt endocrine function. Humans and wildlife are exposed to EDCs might alter endocrine functions through various mechanisms and lead to an adverse effects. Hence, EDCs identification is important to protect the ecosystem and to promote the public health. Leveraging in-vitro and in-vivo experiments to identify potential EDCs is time consuming and expensive. Hence, quantitative structure-activity relationship is applied to screen the potential EDCs. Here, we summarize the predictive models developed using various algorithms to forecast the binding activity of chemicals to the estrogen and androgen receptors, alpha-fetoprotein, and sex hormone binding globulin.</p>","PeriodicalId":51085,"journal":{"name":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","volume":"36 4","pages":"192-218"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10590501.2018.1537132","citationCount":"15","resultStr":"{\"title\":\"Computational prediction models for assessing endocrine disrupting potential of chemicals.\",\"authors\":\"Sugunadevi Sakkiah,&nbsp;Wenjing Guo,&nbsp;Bohu Pan,&nbsp;Rebecca Kusko,&nbsp;Weida Tong,&nbsp;Huixiao Hong\",\"doi\":\"10.1080/10590501.2018.1537132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endocrine disrupting chemicals (EDCs) mimic natural hormones and disrupt endocrine function. Humans and wildlife are exposed to EDCs might alter endocrine functions through various mechanisms and lead to an adverse effects. Hence, EDCs identification is important to protect the ecosystem and to promote the public health. Leveraging in-vitro and in-vivo experiments to identify potential EDCs is time consuming and expensive. Hence, quantitative structure-activity relationship is applied to screen the potential EDCs. Here, we summarize the predictive models developed using various algorithms to forecast the binding activity of chemicals to the estrogen and androgen receptors, alpha-fetoprotein, and sex hormone binding globulin.</p>\",\"PeriodicalId\":51085,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews\",\"volume\":\"36 4\",\"pages\":\"192-218\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10590501.2018.1537132\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10590501.2018.1537132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10590501.2018.1537132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 15

摘要

内分泌干扰物(EDCs)模仿天然激素,破坏内分泌功能。人类和野生动物暴露于EDCs后,可能通过多种机制改变内分泌功能,并产生不良影响。因此,识别EDCs对保护生态系统和促进公众健康具有重要意义。利用体外和体内实验来识别潜在的EDCs既耗时又昂贵。因此,定量的构效关系被用于筛选潜在的EDCs。在这里,我们总结了使用各种算法开发的预测模型,以预测化学物质与雌激素和雄激素受体、甲胎蛋白和性激素结合球蛋白的结合活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational prediction models for assessing endocrine disrupting potential of chemicals.

Endocrine disrupting chemicals (EDCs) mimic natural hormones and disrupt endocrine function. Humans and wildlife are exposed to EDCs might alter endocrine functions through various mechanisms and lead to an adverse effects. Hence, EDCs identification is important to protect the ecosystem and to promote the public health. Leveraging in-vitro and in-vivo experiments to identify potential EDCs is time consuming and expensive. Hence, quantitative structure-activity relationship is applied to screen the potential EDCs. Here, we summarize the predictive models developed using various algorithms to forecast the binding activity of chemicals to the estrogen and androgen receptors, alpha-fetoprotein, and sex hormone binding globulin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
>24 weeks
期刊介绍: Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews aims at rapid publication of reviews on important subjects in various areas of environmental toxicology, health and carcinogenesis. Among the subjects covered are risk assessments of chemicals including nanomaterials and physical agents of environmental significance, harmful organisms found in the environment and toxic agents they produce, and food and drugs as environmental factors. It includes basic research, methodology, host susceptibility, mechanistic studies, theoretical modeling, environmental and geotechnical engineering, and environmental protection. Submission to this journal is primarily on an invitational basis. All submissions should be made through the Editorial Manager site, and are subject to peer review by independent, anonymous expert referees. Please review the instructions for authors for manuscript submission guidance.
期刊最新文献
Polycyclic aromatic hydrocarbons as a potential source of carcinogenicity of mate. Enhanced generation of reactive oxygen species and photocatalytic activity by Pt-based metallic nanostructures: the composition matters. Intrinsic catalytic activity of rhodium nanoparticles with respect to reactive oxygen species scavenging: implication for diminishing cytotoxicity. Electrochemical detection and quantification of Reactive Red 195 dyes on graphene modified glassy carbon electrode. Regulation of cytochrome P450 expression by microRNAs and long noncoding RNAs: Epigenetic mechanisms in environmental toxicology and carcinogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1