{"title":"IFITM3体内抗病毒保护。","authors":"Ashley Zani, Jacob S Yount","doi":"10.1007/s40588-018-0103-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Interferon-induced transmembrane protein 3 (IFITM3) is a cellular restriction factor that blocks fusion between virus and host membranes. Here, we provide an introduction to IFITM3 and the biochemical regulation underlying its antiviral activity. Further, we analyze and summarize the published literature examining phenotypes of IFITM3 knockout mice upon infections with viral pathogens and discuss the controversial association between single nucleotide polymorphisms (SNPs) in the human <i>IFITM3</i> gene and severe virus infections.</p><p><strong>Recent findings: </strong>Recent publications show that IFITM3 knockout mice experience more severe pathologies than wild-type mice in diverse virus infections, including infections with influenza A virus, West Nile virus, Chikungunya virus, Venezuelan equine encephalitis virus, respiratory syncytial virus, and cytomegalovirus. Likewise, numerous studies of humans of Chinese ancestry have associated the <i>IFITM3</i> SNP rs12252-C with severe influenza virus infections, though examinations of other populations, such as Europeans, in which this SNP is rare, have largely failed to identify an association with severe infections. A second SNP, rs34481144-A, found in the human <i>IFITM3</i> promoter has also recently been reported to be a risk allele for severe influenza virus infections.</p><p><strong>Summary: </strong>There is significant evidence for a protective role of IFITM3 against virus infections in both mice and humans, though additional work is required to identify the range of pathogens restricted by IFITM3 and the mechanisms by which human SNPs affect IFITM3 levels or functionality.</p>","PeriodicalId":45506,"journal":{"name":"Current Clinical Microbiology Reports","volume":"5 4","pages":"229-237"},"PeriodicalIF":3.1000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334760/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antiviral Protection by IFITM3 In Vivo.\",\"authors\":\"Ashley Zani, Jacob S Yount\",\"doi\":\"10.1007/s40588-018-0103-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>Interferon-induced transmembrane protein 3 (IFITM3) is a cellular restriction factor that blocks fusion between virus and host membranes. Here, we provide an introduction to IFITM3 and the biochemical regulation underlying its antiviral activity. Further, we analyze and summarize the published literature examining phenotypes of IFITM3 knockout mice upon infections with viral pathogens and discuss the controversial association between single nucleotide polymorphisms (SNPs) in the human <i>IFITM3</i> gene and severe virus infections.</p><p><strong>Recent findings: </strong>Recent publications show that IFITM3 knockout mice experience more severe pathologies than wild-type mice in diverse virus infections, including infections with influenza A virus, West Nile virus, Chikungunya virus, Venezuelan equine encephalitis virus, respiratory syncytial virus, and cytomegalovirus. Likewise, numerous studies of humans of Chinese ancestry have associated the <i>IFITM3</i> SNP rs12252-C with severe influenza virus infections, though examinations of other populations, such as Europeans, in which this SNP is rare, have largely failed to identify an association with severe infections. A second SNP, rs34481144-A, found in the human <i>IFITM3</i> promoter has also recently been reported to be a risk allele for severe influenza virus infections.</p><p><strong>Summary: </strong>There is significant evidence for a protective role of IFITM3 against virus infections in both mice and humans, though additional work is required to identify the range of pathogens restricted by IFITM3 and the mechanisms by which human SNPs affect IFITM3 levels or functionality.</p>\",\"PeriodicalId\":45506,\"journal\":{\"name\":\"Current Clinical Microbiology Reports\",\"volume\":\"5 4\",\"pages\":\"229-237\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334760/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Clinical Microbiology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40588-018-0103-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/8/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Clinical Microbiology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40588-018-0103-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/8/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
综述目的:干扰素诱导的跨膜蛋白3(IFITM3)是一种阻断病毒和宿主膜融合的细胞限制性因子。在这里,我们介绍了IFITM3及其抗病毒活性的生化调控。此外,我们分析和总结了已发表的研究IFITM3敲除小鼠感染病毒病原体后表型的文献,并讨论了人类IFITM3基因单核苷酸多态性(SNPs)与严重病毒感染之间有争议的关联。最近的发现:最近的出版物表明,IFITM3敲除小鼠在各种病毒感染中比野生型小鼠经历更严重的病理,包括感染甲型流感病毒、西尼罗河病毒、基孔肯亚病毒、委内瑞拉马脑炎病毒、呼吸道合胞病毒和巨细胞病毒。同样,许多对中国血统的人类的研究都将IFITM3 SNP rs12252-C与严重的流感病毒感染联系起来,尽管对其他人群(如欧洲人)的检查在很大程度上未能确定这种SNP与严重感染的联系,在欧洲人中这种SNP是罕见的。在人类IFITM3启动子中发现的第二个SNP rs34481144-A最近也被报道为严重流感病毒感染的风险等位基因。摘要:有重要证据表明IFITM3对小鼠和人类的病毒感染具有保护作用,尽管还需要额外的工作来确定IFITM3限制的病原体范围以及人类SNPs影响IFITM3水平或功能的机制。
Purpose of review: Interferon-induced transmembrane protein 3 (IFITM3) is a cellular restriction factor that blocks fusion between virus and host membranes. Here, we provide an introduction to IFITM3 and the biochemical regulation underlying its antiviral activity. Further, we analyze and summarize the published literature examining phenotypes of IFITM3 knockout mice upon infections with viral pathogens and discuss the controversial association between single nucleotide polymorphisms (SNPs) in the human IFITM3 gene and severe virus infections.
Recent findings: Recent publications show that IFITM3 knockout mice experience more severe pathologies than wild-type mice in diverse virus infections, including infections with influenza A virus, West Nile virus, Chikungunya virus, Venezuelan equine encephalitis virus, respiratory syncytial virus, and cytomegalovirus. Likewise, numerous studies of humans of Chinese ancestry have associated the IFITM3 SNP rs12252-C with severe influenza virus infections, though examinations of other populations, such as Europeans, in which this SNP is rare, have largely failed to identify an association with severe infections. A second SNP, rs34481144-A, found in the human IFITM3 promoter has also recently been reported to be a risk allele for severe influenza virus infections.
Summary: There is significant evidence for a protective role of IFITM3 against virus infections in both mice and humans, though additional work is required to identify the range of pathogens restricted by IFITM3 and the mechanisms by which human SNPs affect IFITM3 levels or functionality.
期刊介绍:
Current Clinical Microbiology Reports commissions expert reviews from leading scientists at the forefront of research in microbiology. The journal covers this broad field by dividing it into four key main areas of study: virology, bacteriology, parasitology, and mycology. Within each of the four sections, experts from around the world address important aspects of clinical microbiology such as immunology, diagnostics, therapeutics, antibiotics and antibiotic resistance, and vaccines. Some of the world’s foremost authorities in the field of microbiology serve as section editors and editorial board members. Section editors select topics for which leading researchers are invited to contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, which are highlighted in annotated reference lists. These timely reviews of the literature examine the latest scientific discoveries and controversies as they emerge and are indispensable to both researchers and clinicians. The editorial board, composed of more than 20 internationally diverse members, reviews the annual table of contents, ensures that topics address all aspects of emerging research, and where applicable suggests topics of critical importance to various countries/regions.