利用主成分分析法校正拷贝数变异数据。

Jiayu Chen, Jingyu Liu, Vince D Calhoun
{"title":"利用主成分分析法校正拷贝数变异数据。","authors":"Jiayu Chen, Jingyu Liu, Vince D Calhoun","doi":"10.1109/BIBMW.2010.5703928","DOIUrl":null,"url":null,"abstract":"<p><p>Copy number variation (CNV) detection using SNP array data is challenging due to the low signal-to-noise ratio. In this study, we propose a principal component analysis (PCA) based correction to eliminate variance in CNV data induced by potential confounding factors. Simulations show a substantial improvement in CNV detection accuracy after correction. We also observe a significant improvement in data quality in real SNP array data after correction.</p>","PeriodicalId":73283,"journal":{"name":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","volume":"2010 ","pages":"827-828"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353609/pdf/nihms-1007295.pdf","citationCount":"0","resultStr":"{\"title\":\"Correction of Copy Number Variation Data Using Principal Component Analysis.\",\"authors\":\"Jiayu Chen, Jingyu Liu, Vince D Calhoun\",\"doi\":\"10.1109/BIBMW.2010.5703928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Copy number variation (CNV) detection using SNP array data is challenging due to the low signal-to-noise ratio. In this study, we propose a principal component analysis (PCA) based correction to eliminate variance in CNV data induced by potential confounding factors. Simulations show a substantial improvement in CNV detection accuracy after correction. We also observe a significant improvement in data quality in real SNP array data after correction.</p>\",\"PeriodicalId\":73283,\"journal\":{\"name\":\"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine\",\"volume\":\"2010 \",\"pages\":\"827-828\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353609/pdf/nihms-1007295.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2010.5703928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2011/1/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2010.5703928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/1/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于信噪比低,使用 SNP 阵列数据进行拷贝数变异 (CNV) 检测具有挑战性。在本研究中,我们提出了一种基于主成分分析(PCA)的校正方法,以消除潜在混杂因素引起的 CNV 数据方差。模拟结果表明,校正后 CNV 检测准确率大幅提高。我们还观察到,经过校正后,真实 SNP 阵列数据的数据质量也有明显改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Correction of Copy Number Variation Data Using Principal Component Analysis.

Copy number variation (CNV) detection using SNP array data is challenging due to the low signal-to-noise ratio. In this study, we propose a principal component analysis (PCA) based correction to eliminate variance in CNV data induced by potential confounding factors. Simulations show a substantial improvement in CNV detection accuracy after correction. We also observe a significant improvement in data quality in real SNP array data after correction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diurnal Pain Classification in Critically Ill Patients using Machine Learning on Accelerometry and Analgesic Data. Transmission cluster characteristics of global, regional, and lineage-specific SARS-CoV-2 phylogenies. Document-level DDI relation extraction with document-entity embedding The Network Pharmacological Mechanism of Yizhiningshen Oral Liquid in the Treatment of Tic Disorders Study on the Medication Law of Traditional Chinese medicine treating Lumbago based on TCM electronic medical record
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1