{"title":"在多发性硬化症动物模型的早期阶段,意想不到的小胶质细胞“失活”与突触传递改变有关。","authors":"Shaona Acharjee, Quentin J Pittman","doi":"10.1177/1179069519825882","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis, and its animal model-experimental autoimmune encephalomyelitis (EAE), is a demyelinating disease causing motor and sensory dysfunction, as well as behavioral comorbidities. In exploring possible functional changes underlying behavioral comorbidities in EAE, we observed increased excitatory drive onto the major cells of the basolateral amygdala. This was associated with increased numbers of dendritic spines. An unexpected finding was that microglial cells at this time were in a \"deactivated\" state, and further studies suggested that the microglial deactivation was responsible for the increased excitatory drive. This is the first report of microglial deactivation in an inflammatory disease and raises many questions as to the underlying mechanisms and functional relevance.</p>","PeriodicalId":15817,"journal":{"name":"Journal of Experimental Neuroscience","volume":"13 ","pages":"1179069519825882"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1179069519825882","citationCount":"2","resultStr":"{\"title\":\"Unexpected Microglial \\\"De-activation\\\" Associated With Altered Synaptic Transmission in the Early Stages of an Animal Model of Multiple Sclerosis.\",\"authors\":\"Shaona Acharjee, Quentin J Pittman\",\"doi\":\"10.1177/1179069519825882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple sclerosis, and its animal model-experimental autoimmune encephalomyelitis (EAE), is a demyelinating disease causing motor and sensory dysfunction, as well as behavioral comorbidities. In exploring possible functional changes underlying behavioral comorbidities in EAE, we observed increased excitatory drive onto the major cells of the basolateral amygdala. This was associated with increased numbers of dendritic spines. An unexpected finding was that microglial cells at this time were in a \\\"deactivated\\\" state, and further studies suggested that the microglial deactivation was responsible for the increased excitatory drive. This is the first report of microglial deactivation in an inflammatory disease and raises many questions as to the underlying mechanisms and functional relevance.</p>\",\"PeriodicalId\":15817,\"journal\":{\"name\":\"Journal of Experimental Neuroscience\",\"volume\":\"13 \",\"pages\":\"1179069519825882\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1179069519825882\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1179069519825882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1179069519825882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Unexpected Microglial "De-activation" Associated With Altered Synaptic Transmission in the Early Stages of an Animal Model of Multiple Sclerosis.
Multiple sclerosis, and its animal model-experimental autoimmune encephalomyelitis (EAE), is a demyelinating disease causing motor and sensory dysfunction, as well as behavioral comorbidities. In exploring possible functional changes underlying behavioral comorbidities in EAE, we observed increased excitatory drive onto the major cells of the basolateral amygdala. This was associated with increased numbers of dendritic spines. An unexpected finding was that microglial cells at this time were in a "deactivated" state, and further studies suggested that the microglial deactivation was responsible for the increased excitatory drive. This is the first report of microglial deactivation in an inflammatory disease and raises many questions as to the underlying mechanisms and functional relevance.