Didier Devaurs, Malvina Papanastasiou, Dinler A Antunes, Jayvee R Abella, Mark Moll, Daniel Ricklin, John D Lambris, Lydia E Kavraki
{"title":"通过氢交换和构象取样分析补体蛋白 C3d 的原生状态","authors":"Didier Devaurs, Malvina Papanastasiou, Dinler A Antunes, Jayvee R Abella, Mark Moll, Daniel Ricklin, John D Lambris, Lydia E Kavraki","doi":"10.1504/IJCBDD.2018.090834","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen/deuterium exchange detected by mass spectrometry (HDXMS) provides valuable information on protein structure and dynamics. Although HDX-MS data is often interpreted using crystal structures, it was suggested that conformational ensembles produced by molecular dynamics simulations yield more accurate interpretations. In this paper, we analyse the complement protein C3d by performing an HDX-MS experiment, and evaluate several interpretation methodologies using an existing prediction model to derive HDX-MS data from protein structure. To interpret and refine C3d's HDX-MS data, we look for a conformation (or conformational ensemble) of C3d that allows computationally replicating this data. We confirm that crystal structures are not a good choice and suggest that conformational ensembles produced by molecular dynamics simulations might not always be satisfactory either. Finally, we show that coarse-grained conformational sampling of C3d produces a conformation from which its HDX-MS data can be replicated and refined.</p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"11 1-2","pages":"90-113"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349257/pdf/nihms-990608.pdf","citationCount":"0","resultStr":"{\"title\":\"Native State of Complement Protein C3d Analysed via Hydrogen Exchange and Conformational Sampling.\",\"authors\":\"Didier Devaurs, Malvina Papanastasiou, Dinler A Antunes, Jayvee R Abella, Mark Moll, Daniel Ricklin, John D Lambris, Lydia E Kavraki\",\"doi\":\"10.1504/IJCBDD.2018.090834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogen/deuterium exchange detected by mass spectrometry (HDXMS) provides valuable information on protein structure and dynamics. Although HDX-MS data is often interpreted using crystal structures, it was suggested that conformational ensembles produced by molecular dynamics simulations yield more accurate interpretations. In this paper, we analyse the complement protein C3d by performing an HDX-MS experiment, and evaluate several interpretation methodologies using an existing prediction model to derive HDX-MS data from protein structure. To interpret and refine C3d's HDX-MS data, we look for a conformation (or conformational ensemble) of C3d that allows computationally replicating this data. We confirm that crystal structures are not a good choice and suggest that conformational ensembles produced by molecular dynamics simulations might not always be satisfactory either. Finally, we show that coarse-grained conformational sampling of C3d produces a conformation from which its HDX-MS data can be replicated and refined.</p>\",\"PeriodicalId\":39227,\"journal\":{\"name\":\"International Journal of Computational Biology and Drug Design\",\"volume\":\"11 1-2\",\"pages\":\"90-113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349257/pdf/nihms-990608.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Biology and Drug Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCBDD.2018.090834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/3/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2018.090834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/3/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Native State of Complement Protein C3d Analysed via Hydrogen Exchange and Conformational Sampling.
Hydrogen/deuterium exchange detected by mass spectrometry (HDXMS) provides valuable information on protein structure and dynamics. Although HDX-MS data is often interpreted using crystal structures, it was suggested that conformational ensembles produced by molecular dynamics simulations yield more accurate interpretations. In this paper, we analyse the complement protein C3d by performing an HDX-MS experiment, and evaluate several interpretation methodologies using an existing prediction model to derive HDX-MS data from protein structure. To interpret and refine C3d's HDX-MS data, we look for a conformation (or conformational ensemble) of C3d that allows computationally replicating this data. We confirm that crystal structures are not a good choice and suggest that conformational ensembles produced by molecular dynamics simulations might not always be satisfactory either. Finally, we show that coarse-grained conformational sampling of C3d produces a conformation from which its HDX-MS data can be replicated and refined.