Travis B Thompson, Beatrice M Riviere, Matthew G Knepley
{"title":"一种模拟小肠急性水肿和复苏的隐式间断伽辽金方法。","authors":"Travis B Thompson, Beatrice M Riviere, Matthew G Knepley","doi":"10.1093/imammb/dqz001","DOIUrl":null,"url":null,"abstract":"<p><p>Edema, also termed oedema, is a generalized medical condition associated with an abnormal aggregation of fluid in a tissue matrix. In the intestine, excessive edema can lead to serious health complications associated with reduced motility. A $7.5\\%$ solution of hypertonic saline (HS) has been hypothesized as an effective means to reduce the effects of edema following surgery or injury. However, detailed clinical edema experiments can be difficult to implement, or costly, in practice. In this manuscript we introduce an implicit in time discontinuous Galerkin method with novel adaptations for modeling edema in the 3D layered physiology of the intestine. The model improves over early work via inclusion of the tissue intrinsic storage coefficient, and the effects of Starling overestimation for high venous pressures. Validation against a recent clinical experiment in HS resuscitation of acute edema is presented; the results support the clinical hypothesis that 7.5% HS solution may be effective in the resuscitation of acute edema formation. New results include an improved view into the effects of resuscitation on the hydrostatic pressure profile of edematous rats, effects on lumenal volume attenuation, relative fluid gain and an estimation of the impacts of both acute edema and resuscitation on intestinal motility.</p>","PeriodicalId":49863,"journal":{"name":"Mathematical Medicine and Biology-A Journal of the Ima","volume":"36 4","pages":"513-548"},"PeriodicalIF":0.8000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/imammb/dqz001","citationCount":"5","resultStr":"{\"title\":\"An implicit discontinuous Galerkin method for modeling acute edema and resuscitation in the small intestine.\",\"authors\":\"Travis B Thompson, Beatrice M Riviere, Matthew G Knepley\",\"doi\":\"10.1093/imammb/dqz001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Edema, also termed oedema, is a generalized medical condition associated with an abnormal aggregation of fluid in a tissue matrix. In the intestine, excessive edema can lead to serious health complications associated with reduced motility. A $7.5\\\\%$ solution of hypertonic saline (HS) has been hypothesized as an effective means to reduce the effects of edema following surgery or injury. However, detailed clinical edema experiments can be difficult to implement, or costly, in practice. In this manuscript we introduce an implicit in time discontinuous Galerkin method with novel adaptations for modeling edema in the 3D layered physiology of the intestine. The model improves over early work via inclusion of the tissue intrinsic storage coefficient, and the effects of Starling overestimation for high venous pressures. Validation against a recent clinical experiment in HS resuscitation of acute edema is presented; the results support the clinical hypothesis that 7.5% HS solution may be effective in the resuscitation of acute edema formation. New results include an improved view into the effects of resuscitation on the hydrostatic pressure profile of edematous rats, effects on lumenal volume attenuation, relative fluid gain and an estimation of the impacts of both acute edema and resuscitation on intestinal motility.</p>\",\"PeriodicalId\":49863,\"journal\":{\"name\":\"Mathematical Medicine and Biology-A Journal of the Ima\",\"volume\":\"36 4\",\"pages\":\"513-548\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/imammb/dqz001\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Medicine and Biology-A Journal of the Ima\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/imammb/dqz001\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Medicine and Biology-A Journal of the Ima","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/imammb/dqz001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOLOGY","Score":null,"Total":0}
An implicit discontinuous Galerkin method for modeling acute edema and resuscitation in the small intestine.
Edema, also termed oedema, is a generalized medical condition associated with an abnormal aggregation of fluid in a tissue matrix. In the intestine, excessive edema can lead to serious health complications associated with reduced motility. A $7.5\%$ solution of hypertonic saline (HS) has been hypothesized as an effective means to reduce the effects of edema following surgery or injury. However, detailed clinical edema experiments can be difficult to implement, or costly, in practice. In this manuscript we introduce an implicit in time discontinuous Galerkin method with novel adaptations for modeling edema in the 3D layered physiology of the intestine. The model improves over early work via inclusion of the tissue intrinsic storage coefficient, and the effects of Starling overestimation for high venous pressures. Validation against a recent clinical experiment in HS resuscitation of acute edema is presented; the results support the clinical hypothesis that 7.5% HS solution may be effective in the resuscitation of acute edema formation. New results include an improved view into the effects of resuscitation on the hydrostatic pressure profile of edematous rats, effects on lumenal volume attenuation, relative fluid gain and an estimation of the impacts of both acute edema and resuscitation on intestinal motility.
期刊介绍:
Formerly the IMA Journal of Mathematics Applied in Medicine and Biology.
Mathematical Medicine and Biology publishes original articles with a significant mathematical content addressing topics in medicine and biology. Papers exploiting modern developments in applied mathematics are particularly welcome. The biomedical relevance of mathematical models should be demonstrated clearly and validation by comparison against experiment is strongly encouraged.
The journal welcomes contributions relevant to any area of the life sciences including:
-biomechanics-
biophysics-
cell biology-
developmental biology-
ecology and the environment-
epidemiology-
immunology-
infectious diseases-
neuroscience-
pharmacology-
physiology-
population biology