{"title":"脱硫弧菌属硫酸盐还原菌的氢化酶和H2代谢。","authors":"Carole Baffert, Arlette Kpebe, Luisana Avilan, Myriam Brugna","doi":"10.1016/bs.ampbs.2019.03.001","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen metabolism plays a central role in sulfate-reducing bacteria of the Desulfovibrio genus and is based on hydrogenases that catalyze the reversible conversion of protons into dihydrogen. These metabolically versatile microorganisms possess a complex hydrogenase system composed of several enzymes of both [FeFe]- and [NiFe]-type that can vary considerably from one Desulfovibrio species to another. This review covers the molecular and physiological aspects of hydrogenases and H<sub>2</sub> metabolism in Desulfovibrio but focuses particularly on our model bacterium Desulfovibrio fructosovorans. The search of hydrogenase genes in more than 30 sequenced genomes provides an overview of the distribution of these enzymes in Desulfovibrio. Our discussion will consider the significance of the involvement of electron-bifurcation in H<sub>2</sub> metabolism.</p>","PeriodicalId":50953,"journal":{"name":"Advances in Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.ampbs.2019.03.001","citationCount":"27","resultStr":"{\"title\":\"Hydrogenases and H<sub>2</sub> metabolism in sulfate-reducing bacteria of the Desulfovibrio genus.\",\"authors\":\"Carole Baffert, Arlette Kpebe, Luisana Avilan, Myriam Brugna\",\"doi\":\"10.1016/bs.ampbs.2019.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogen metabolism plays a central role in sulfate-reducing bacteria of the Desulfovibrio genus and is based on hydrogenases that catalyze the reversible conversion of protons into dihydrogen. These metabolically versatile microorganisms possess a complex hydrogenase system composed of several enzymes of both [FeFe]- and [NiFe]-type that can vary considerably from one Desulfovibrio species to another. This review covers the molecular and physiological aspects of hydrogenases and H<sub>2</sub> metabolism in Desulfovibrio but focuses particularly on our model bacterium Desulfovibrio fructosovorans. The search of hydrogenase genes in more than 30 sequenced genomes provides an overview of the distribution of these enzymes in Desulfovibrio. Our discussion will consider the significance of the involvement of electron-bifurcation in H<sub>2</sub> metabolism.</p>\",\"PeriodicalId\":50953,\"journal\":{\"name\":\"Advances in Microbial Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/bs.ampbs.2019.03.001\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Microbial Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ampbs.2019.03.001\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/4/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Microbial Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ampbs.2019.03.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/4/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Hydrogenases and H2 metabolism in sulfate-reducing bacteria of the Desulfovibrio genus.
Hydrogen metabolism plays a central role in sulfate-reducing bacteria of the Desulfovibrio genus and is based on hydrogenases that catalyze the reversible conversion of protons into dihydrogen. These metabolically versatile microorganisms possess a complex hydrogenase system composed of several enzymes of both [FeFe]- and [NiFe]-type that can vary considerably from one Desulfovibrio species to another. This review covers the molecular and physiological aspects of hydrogenases and H2 metabolism in Desulfovibrio but focuses particularly on our model bacterium Desulfovibrio fructosovorans. The search of hydrogenase genes in more than 30 sequenced genomes provides an overview of the distribution of these enzymes in Desulfovibrio. Our discussion will consider the significance of the involvement of electron-bifurcation in H2 metabolism.
期刊介绍:
Advances in Microbial Physiology publishes topical and important reviews, interpreting physiology to include all material that contributes to our understanding of how microorganisms and their component parts work. First published in 1967, the editors have always striven to interpret microbial physiology in the broadest context and have never restricted the contents to traditional views of whole cell physiology.