Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu Tang, Carl A Gunter
{"title":"黑暗土地上的漏锅:理解SGX的记忆侧通道危险。","authors":"Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu Tang, Carl A Gunter","doi":"10.1145/3133956.3134038","DOIUrl":null,"url":null,"abstract":"<p><p>Side-channel risks of Intel's SGX have recently attracted great attention. Under the spotlight is the newly discovered page-fault attack, in which an OS-level adversary induces page faults to observe the page-level access patterns of a protected process running in an SGX enclave. With almost all proposed defense focusing on this attack, little is known about whether such efforts indeed raises the bar for the adversary, whether a simple variation of the attack renders all protection ineffective, not to mention an in-depth understanding of other attack surfaces in the SGX system. In the paper, we report the first step toward systematic analyses of side-channel threats that SGX faces, focusing on the risks associated with its memory management. Our research identifies 8 potential attack vectors, ranging from TLB to DRAM modules. More importantly, we highlight the common misunderstandings about SGX memory side channels, demonstrating that high frequent AEXs can be avoided when recovering EdDSA secret key through a new page channel and fine-grained monitoring of enclave programs (at the level of 64B) can be done through combining both cache and cross-enclave DRAM channels. Our findings reveal the gap between the ongoing security research on SGX and its side-channel weaknesses, redefine the side-channel threat model for secure enclaves, and can provoke a discussion on when to use such a system and how to use it securely.</p>","PeriodicalId":72687,"journal":{"name":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","volume":"2017 ","pages":"2421-2434"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3133956.3134038","citationCount":"308","resultStr":"{\"title\":\"Leaky Cauldron on the Dark Land: Understanding Memory Side-Channel Hazards in SGX.\",\"authors\":\"Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu Tang, Carl A Gunter\",\"doi\":\"10.1145/3133956.3134038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Side-channel risks of Intel's SGX have recently attracted great attention. Under the spotlight is the newly discovered page-fault attack, in which an OS-level adversary induces page faults to observe the page-level access patterns of a protected process running in an SGX enclave. With almost all proposed defense focusing on this attack, little is known about whether such efforts indeed raises the bar for the adversary, whether a simple variation of the attack renders all protection ineffective, not to mention an in-depth understanding of other attack surfaces in the SGX system. In the paper, we report the first step toward systematic analyses of side-channel threats that SGX faces, focusing on the risks associated with its memory management. Our research identifies 8 potential attack vectors, ranging from TLB to DRAM modules. More importantly, we highlight the common misunderstandings about SGX memory side channels, demonstrating that high frequent AEXs can be avoided when recovering EdDSA secret key through a new page channel and fine-grained monitoring of enclave programs (at the level of 64B) can be done through combining both cache and cross-enclave DRAM channels. Our findings reveal the gap between the ongoing security research on SGX and its side-channel weaknesses, redefine the side-channel threat model for secure enclaves, and can provoke a discussion on when to use such a system and how to use it securely.</p>\",\"PeriodicalId\":72687,\"journal\":{\"name\":\"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security\",\"volume\":\"2017 \",\"pages\":\"2421-2434\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3133956.3134038\",\"citationCount\":\"308\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3133956.3134038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3133956.3134038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Leaky Cauldron on the Dark Land: Understanding Memory Side-Channel Hazards in SGX.
Side-channel risks of Intel's SGX have recently attracted great attention. Under the spotlight is the newly discovered page-fault attack, in which an OS-level adversary induces page faults to observe the page-level access patterns of a protected process running in an SGX enclave. With almost all proposed defense focusing on this attack, little is known about whether such efforts indeed raises the bar for the adversary, whether a simple variation of the attack renders all protection ineffective, not to mention an in-depth understanding of other attack surfaces in the SGX system. In the paper, we report the first step toward systematic analyses of side-channel threats that SGX faces, focusing on the risks associated with its memory management. Our research identifies 8 potential attack vectors, ranging from TLB to DRAM modules. More importantly, we highlight the common misunderstandings about SGX memory side channels, demonstrating that high frequent AEXs can be avoided when recovering EdDSA secret key through a new page channel and fine-grained monitoring of enclave programs (at the level of 64B) can be done through combining both cache and cross-enclave DRAM channels. Our findings reveal the gap between the ongoing security research on SGX and its side-channel weaknesses, redefine the side-channel threat model for secure enclaves, and can provoke a discussion on when to use such a system and how to use it securely.