Avner Ehrlich, Daniel Duche, Gladys Ouedraogo, Yaakov Nahmias
{"title":"肝脏片上微器件设计的挑战与机遇。","authors":"Avner Ehrlich, Daniel Duche, Gladys Ouedraogo, Yaakov Nahmias","doi":"10.1146/annurev-bioeng-060418-052305","DOIUrl":null,"url":null,"abstract":"<p><p>The liver is the central hub of xenobiotic metabolism and consequently the organ most prone to cosmetic- and drug-induced toxicity. Failure to detect liver toxicity or to assess compound clearance during product development is a major cause of postmarketing product withdrawal, with disastrous clinical and financial consequences. While small animals are still the preferred model in drug development, the recent ban on animal use in the European Union created a pressing need to develop precise and efficient tools to detect human liver toxicity during cosmetic development. This article includes a brief review of liver development, organization, and function and focuses on the state of the art of long-term cell culture, including hepatocyte cell sources, heterotypic cell-cell interactions, oxygen demands, and culture medium formulation. Finally, the article reviews emerging liver-on-chip devices and discusses the advantages and pitfalls of individual designs. The goal of this review is to provide a framework to design liver-on-chip devices and criteria with which to evaluate this emerging technology.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"21 ","pages":"219-239"},"PeriodicalIF":12.8000,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-bioeng-060418-052305","citationCount":"66","resultStr":"{\"title\":\"Challenges and Opportunities in the Design of Liver-on-Chip Microdevices.\",\"authors\":\"Avner Ehrlich, Daniel Duche, Gladys Ouedraogo, Yaakov Nahmias\",\"doi\":\"10.1146/annurev-bioeng-060418-052305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The liver is the central hub of xenobiotic metabolism and consequently the organ most prone to cosmetic- and drug-induced toxicity. Failure to detect liver toxicity or to assess compound clearance during product development is a major cause of postmarketing product withdrawal, with disastrous clinical and financial consequences. While small animals are still the preferred model in drug development, the recent ban on animal use in the European Union created a pressing need to develop precise and efficient tools to detect human liver toxicity during cosmetic development. This article includes a brief review of liver development, organization, and function and focuses on the state of the art of long-term cell culture, including hepatocyte cell sources, heterotypic cell-cell interactions, oxygen demands, and culture medium formulation. Finally, the article reviews emerging liver-on-chip devices and discusses the advantages and pitfalls of individual designs. The goal of this review is to provide a framework to design liver-on-chip devices and criteria with which to evaluate this emerging technology.</p>\",\"PeriodicalId\":50757,\"journal\":{\"name\":\"Annual Review of Biomedical Engineering\",\"volume\":\"21 \",\"pages\":\"219-239\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2019-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-bioeng-060418-052305\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-bioeng-060418-052305\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-bioeng-060418-052305","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Challenges and Opportunities in the Design of Liver-on-Chip Microdevices.
The liver is the central hub of xenobiotic metabolism and consequently the organ most prone to cosmetic- and drug-induced toxicity. Failure to detect liver toxicity or to assess compound clearance during product development is a major cause of postmarketing product withdrawal, with disastrous clinical and financial consequences. While small animals are still the preferred model in drug development, the recent ban on animal use in the European Union created a pressing need to develop precise and efficient tools to detect human liver toxicity during cosmetic development. This article includes a brief review of liver development, organization, and function and focuses on the state of the art of long-term cell culture, including hepatocyte cell sources, heterotypic cell-cell interactions, oxygen demands, and culture medium formulation. Finally, the article reviews emerging liver-on-chip devices and discusses the advantages and pitfalls of individual designs. The goal of this review is to provide a framework to design liver-on-chip devices and criteria with which to evaluate this emerging technology.
期刊介绍:
Since 1999, the Annual Review of Biomedical Engineering has been capturing major advancements in the expansive realm of biomedical engineering. Encompassing biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, healthcare engineering, drug delivery, bioelectrical engineering, biochemical engineering, and biomedical imaging, the journal remains a vital resource. The current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.