{"title":"人体正电子发射断层扫描神经成像。","authors":"Jacob M Hooker, Richard E Carson","doi":"10.1146/annurev-bioeng-062117-121056","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroimaging with positron emission tomography (PET) is the most powerful tool for understanding pharmacology, neurochemistry, and pathology in the living human brain. This technology combines high-resolution scanners to measure radioactivity throughout the human body with specific, targeted radioactive molecules, which allow measurements of a myriad of biological processes in vivo<i>.</i> While PET brain imaging has been active for almost 40 years, the pace of development for neuroimaging tools, known as radiotracers, and for quantitative analytical techniques has increased dramatically over the past decade. Accordingly, the fundamental questions that can be addressed with PET have expanded in basic neurobiology, psychiatry, neurology, and related therapeutic development. In this review, we introduce the field of human PET neuroimaging, some of its conceptual underpinnings, and motivating questions. We highlight some of the more recent advances in radiotracer development, quantitative modeling, and applications of PET to the study of the human brain.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"21 ","pages":"551-581"},"PeriodicalIF":12.8000,"publicationDate":"2019-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-bioeng-062117-121056","citationCount":"35","resultStr":"{\"title\":\"Human Positron Emission Tomography Neuroimaging.\",\"authors\":\"Jacob M Hooker, Richard E Carson\",\"doi\":\"10.1146/annurev-bioeng-062117-121056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroimaging with positron emission tomography (PET) is the most powerful tool for understanding pharmacology, neurochemistry, and pathology in the living human brain. This technology combines high-resolution scanners to measure radioactivity throughout the human body with specific, targeted radioactive molecules, which allow measurements of a myriad of biological processes in vivo<i>.</i> While PET brain imaging has been active for almost 40 years, the pace of development for neuroimaging tools, known as radiotracers, and for quantitative analytical techniques has increased dramatically over the past decade. Accordingly, the fundamental questions that can be addressed with PET have expanded in basic neurobiology, psychiatry, neurology, and related therapeutic development. In this review, we introduce the field of human PET neuroimaging, some of its conceptual underpinnings, and motivating questions. We highlight some of the more recent advances in radiotracer development, quantitative modeling, and applications of PET to the study of the human brain.</p>\",\"PeriodicalId\":50757,\"journal\":{\"name\":\"Annual Review of Biomedical Engineering\",\"volume\":\"21 \",\"pages\":\"551-581\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2019-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-bioeng-062117-121056\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-bioeng-062117-121056\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-bioeng-062117-121056","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Neuroimaging with positron emission tomography (PET) is the most powerful tool for understanding pharmacology, neurochemistry, and pathology in the living human brain. This technology combines high-resolution scanners to measure radioactivity throughout the human body with specific, targeted radioactive molecules, which allow measurements of a myriad of biological processes in vivo. While PET brain imaging has been active for almost 40 years, the pace of development for neuroimaging tools, known as radiotracers, and for quantitative analytical techniques has increased dramatically over the past decade. Accordingly, the fundamental questions that can be addressed with PET have expanded in basic neurobiology, psychiatry, neurology, and related therapeutic development. In this review, we introduce the field of human PET neuroimaging, some of its conceptual underpinnings, and motivating questions. We highlight some of the more recent advances in radiotracer development, quantitative modeling, and applications of PET to the study of the human brain.
期刊介绍:
Since 1999, the Annual Review of Biomedical Engineering has been capturing major advancements in the expansive realm of biomedical engineering. Encompassing biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, healthcare engineering, drug delivery, bioelectrical engineering, biochemical engineering, and biomedical imaging, the journal remains a vital resource. The current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.