Hoang Hoang A, Xuan Tran T T, Nga LE P, Oanh Dang T H
{"title":"控制条纹鲶鱼嗜水气单胞菌病原菌噬菌体的选择。","authors":"Hoang Hoang A, Xuan Tran T T, Nga LE P, Oanh Dang T H","doi":"10.4265/bio.24.23","DOIUrl":null,"url":null,"abstract":"<p><p>Striped catfish (Pangasianodon hypophthalmus) farming in the Mekong Delta Vietnam (MKDVN) importantly contributes to national aquaculture export. Currently, however, diseases occur more frequently across the entire MKDVN region. One of the most common types is hemorrhagic septicemia caused by Aeromonas hydrophila. In this study, isolation and selection of the phages for control in vitro Aeromonas hydrophila were conducted. 24 phages were isolated from 100 striped catfish pond water samples. Next, lytic activity of these phages was clarified. Four phages with short latent period (about 25 to 40 min) and/or high burst size (about 67 to 94 PFU/ cell) were selected to evaluate their infection activity to different phage-resistant A. hydrophila strains. Two phages termed as TG25P and CT45P were subjected to the phage cocktail to inactivate A. hydrophila. Re-growth of the host bacteria appeared about eight hours after treatment. Usage of the phage cocktail that attach different host bacterial receptors is not always much effective than usage of single phage. This is the first report about phage therapy to control A. hydrophila isolated from striped catfish. Some challenges in the phage cocktail were shown to achieve strategies in prospective studies in the context of high antibiotic resistance of A. hydrophila.</p>","PeriodicalId":8777,"journal":{"name":"Biocontrol science","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4265/bio.24.23","citationCount":"24","resultStr":"{\"title\":\"Selection of Phages to Control Aeromonas hydrophila - An Infectious Agent in Striped Catfish.\",\"authors\":\"Hoang Hoang A, Xuan Tran T T, Nga LE P, Oanh Dang T H\",\"doi\":\"10.4265/bio.24.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Striped catfish (Pangasianodon hypophthalmus) farming in the Mekong Delta Vietnam (MKDVN) importantly contributes to national aquaculture export. Currently, however, diseases occur more frequently across the entire MKDVN region. One of the most common types is hemorrhagic septicemia caused by Aeromonas hydrophila. In this study, isolation and selection of the phages for control in vitro Aeromonas hydrophila were conducted. 24 phages were isolated from 100 striped catfish pond water samples. Next, lytic activity of these phages was clarified. Four phages with short latent period (about 25 to 40 min) and/or high burst size (about 67 to 94 PFU/ cell) were selected to evaluate their infection activity to different phage-resistant A. hydrophila strains. Two phages termed as TG25P and CT45P were subjected to the phage cocktail to inactivate A. hydrophila. Re-growth of the host bacteria appeared about eight hours after treatment. Usage of the phage cocktail that attach different host bacterial receptors is not always much effective than usage of single phage. This is the first report about phage therapy to control A. hydrophila isolated from striped catfish. Some challenges in the phage cocktail were shown to achieve strategies in prospective studies in the context of high antibiotic resistance of A. hydrophila.</p>\",\"PeriodicalId\":8777,\"journal\":{\"name\":\"Biocontrol science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4265/bio.24.23\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocontrol science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4265/bio.24.23\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocontrol science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4265/bio.24.23","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Selection of Phages to Control Aeromonas hydrophila - An Infectious Agent in Striped Catfish.
Striped catfish (Pangasianodon hypophthalmus) farming in the Mekong Delta Vietnam (MKDVN) importantly contributes to national aquaculture export. Currently, however, diseases occur more frequently across the entire MKDVN region. One of the most common types is hemorrhagic septicemia caused by Aeromonas hydrophila. In this study, isolation and selection of the phages for control in vitro Aeromonas hydrophila were conducted. 24 phages were isolated from 100 striped catfish pond water samples. Next, lytic activity of these phages was clarified. Four phages with short latent period (about 25 to 40 min) and/or high burst size (about 67 to 94 PFU/ cell) were selected to evaluate their infection activity to different phage-resistant A. hydrophila strains. Two phages termed as TG25P and CT45P were subjected to the phage cocktail to inactivate A. hydrophila. Re-growth of the host bacteria appeared about eight hours after treatment. Usage of the phage cocktail that attach different host bacterial receptors is not always much effective than usage of single phage. This is the first report about phage therapy to control A. hydrophila isolated from striped catfish. Some challenges in the phage cocktail were shown to achieve strategies in prospective studies in the context of high antibiotic resistance of A. hydrophila.
期刊介绍:
The Biocontrol Science provides a medium for the publication of original articles, concise notes, and review articles on all aspects of science and technology of biocontrol.