控制条纹鲶鱼嗜水气单胞菌病原菌噬菌体的选择。

IF 0.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biocontrol science Pub Date : 2019-01-01 DOI:10.4265/bio.24.23
Hoang Hoang A, Xuan Tran T T, Nga LE P, Oanh Dang T H
{"title":"控制条纹鲶鱼嗜水气单胞菌病原菌噬菌体的选择。","authors":"Hoang Hoang A,&nbsp;Xuan Tran T T,&nbsp;Nga LE P,&nbsp;Oanh Dang T H","doi":"10.4265/bio.24.23","DOIUrl":null,"url":null,"abstract":"<p><p>Striped catfish (Pangasianodon hypophthalmus) farming in the Mekong Delta Vietnam (MKDVN) importantly contributes to national aquaculture export. Currently, however, diseases occur more frequently across the entire MKDVN region. One of the most common types is hemorrhagic septicemia caused by Aeromonas hydrophila. In this study, isolation and selection of the phages for control in vitro Aeromonas hydrophila were conducted. 24 phages were isolated from 100 striped catfish pond water samples. Next, lytic activity of these phages was clarified. Four phages with short latent period (about 25 to 40 min) and/or high burst size (about 67 to 94 PFU/ cell) were selected to evaluate their infection activity to different phage-resistant A. hydrophila strains. Two phages termed as TG25P and CT45P were subjected to the phage cocktail to inactivate A. hydrophila. Re-growth of the host bacteria appeared about eight hours after treatment. Usage of the phage cocktail that attach different host bacterial receptors is not always much effective than usage of single phage. This is the first report about phage therapy to control A. hydrophila isolated from striped catfish. Some challenges in the phage cocktail were shown to achieve strategies in prospective studies in the context of high antibiotic resistance of A. hydrophila.</p>","PeriodicalId":8777,"journal":{"name":"Biocontrol science","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4265/bio.24.23","citationCount":"24","resultStr":"{\"title\":\"Selection of Phages to Control Aeromonas hydrophila - An Infectious Agent in Striped Catfish.\",\"authors\":\"Hoang Hoang A,&nbsp;Xuan Tran T T,&nbsp;Nga LE P,&nbsp;Oanh Dang T H\",\"doi\":\"10.4265/bio.24.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Striped catfish (Pangasianodon hypophthalmus) farming in the Mekong Delta Vietnam (MKDVN) importantly contributes to national aquaculture export. Currently, however, diseases occur more frequently across the entire MKDVN region. One of the most common types is hemorrhagic septicemia caused by Aeromonas hydrophila. In this study, isolation and selection of the phages for control in vitro Aeromonas hydrophila were conducted. 24 phages were isolated from 100 striped catfish pond water samples. Next, lytic activity of these phages was clarified. Four phages with short latent period (about 25 to 40 min) and/or high burst size (about 67 to 94 PFU/ cell) were selected to evaluate their infection activity to different phage-resistant A. hydrophila strains. Two phages termed as TG25P and CT45P were subjected to the phage cocktail to inactivate A. hydrophila. Re-growth of the host bacteria appeared about eight hours after treatment. Usage of the phage cocktail that attach different host bacterial receptors is not always much effective than usage of single phage. This is the first report about phage therapy to control A. hydrophila isolated from striped catfish. Some challenges in the phage cocktail were shown to achieve strategies in prospective studies in the context of high antibiotic resistance of A. hydrophila.</p>\",\"PeriodicalId\":8777,\"journal\":{\"name\":\"Biocontrol science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4265/bio.24.23\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocontrol science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4265/bio.24.23\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocontrol science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4265/bio.24.23","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 24

摘要

越南湄公河三角洲条纹鲶鱼(Pangasianodon hypophthalmus)养殖为越南水产养殖出口做出了重要贡献。然而,目前,疾病在整个MKDVN区域更为频繁地发生。最常见的一种是由嗜水气单胞菌引起的出血性败血症。本研究对体外嗜水气单胞菌噬菌体进行了分离和筛选。从100份鲶鱼鱼塘水样中分离出24个噬菌体。接下来,澄清了这些噬菌体的裂解活性。选择潜伏期短(约25 ~ 40 min)和/或爆发大小大(约67 ~ 94 PFU/细胞)的4个噬菌体对不同耐噬菌体嗜水单胞杆菌菌株的感染活性进行评价。TG25P和CT45P两种噬菌体被置于噬菌体鸡尾酒中灭活嗜水芽胞杆菌。治疗后约8小时,宿主细菌出现了重新生长。使用附着不同宿主细菌受体的噬菌体鸡尾酒并不总是比使用单个噬菌体更有效。本文首次报道了用噬菌体疗法控制条纹鲶鱼嗜水单胞菌。在前瞻性研究中,在嗜水单胞菌高抗生素耐药性的背景下,噬菌体鸡尾酒中的一些挑战被证明可以实现策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selection of Phages to Control Aeromonas hydrophila - An Infectious Agent in Striped Catfish.

Striped catfish (Pangasianodon hypophthalmus) farming in the Mekong Delta Vietnam (MKDVN) importantly contributes to national aquaculture export. Currently, however, diseases occur more frequently across the entire MKDVN region. One of the most common types is hemorrhagic septicemia caused by Aeromonas hydrophila. In this study, isolation and selection of the phages for control in vitro Aeromonas hydrophila were conducted. 24 phages were isolated from 100 striped catfish pond water samples. Next, lytic activity of these phages was clarified. Four phages with short latent period (about 25 to 40 min) and/or high burst size (about 67 to 94 PFU/ cell) were selected to evaluate their infection activity to different phage-resistant A. hydrophila strains. Two phages termed as TG25P and CT45P were subjected to the phage cocktail to inactivate A. hydrophila. Re-growth of the host bacteria appeared about eight hours after treatment. Usage of the phage cocktail that attach different host bacterial receptors is not always much effective than usage of single phage. This is the first report about phage therapy to control A. hydrophila isolated from striped catfish. Some challenges in the phage cocktail were shown to achieve strategies in prospective studies in the context of high antibiotic resistance of A. hydrophila.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biocontrol science
Biocontrol science BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
2.60
自引率
8.30%
发文量
21
审稿时长
>12 weeks
期刊介绍: The Biocontrol Science provides a medium for the publication of original articles, concise notes, and review articles on all aspects of science and technology of biocontrol.
期刊最新文献
Inactivation of SARS-CoV-2 by Commercially Available Disinfectants and Cleaners. Remote Bactericidal Effect of Anatase TiO2 Photocatalytic Nanoparticles Annealed with Low-Temperature O2 Plasma. Simple and Rapid Detection of ESBL blaSHV gene from an Urban River in Tokyo by Loop-Mediated Isothermal Amplification. Use of ATP Bioluminescence Assay to Evaluate Oral Streptococci. The Effectiveness of Neutral Electrolyzed Water for Decontaminating the Spray Nozzles of Electric Tankless and Tank-Type Warm-Water Bidet Toilet Seats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1