在阿米巴共培养物中培养的可存活但尚未培养的军团菌群的系统发育特征:使用不同冷却塔水样的案例研究。

IF 0.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biocontrol science Pub Date : 2019-01-01 DOI:10.4265/bio.24.39
Hiroaki Inoue, Kunio Agata, Hiroyuki Ohta
{"title":"在阿米巴共培养物中培养的可存活但尚未培养的军团菌群的系统发育特征:使用不同冷却塔水样的案例研究。","authors":"Hiroaki Inoue,&nbsp;Kunio Agata,&nbsp;Hiroyuki Ohta","doi":"10.4265/bio.24.39","DOIUrl":null,"url":null,"abstract":"<p><p> Legionella spp. exist naturally in association with amoeba in water environments and are known to be the etiological agent of a severe form of pneumonia. To detect diverse Legionella populations in cooling tower water systems, amoebic coculturing was performed for 15 water samples obtained from five different kinds of facilities in six geographically different locations. The growth of Legionella in coculture with Acanthamoeba sp. cells was monitored by quantitative PCR targeting Legionella-specific 16S rRNA genes. Seven out of the 15 samples were positive for Legionella growth and subjected to clone library analysis. A total of 333 clones were classified into 14 operational taxonomic units composed of seven known species and seven previously undescribed groups. Four of the seven Legionella-growth-positive samples harbored detectable levels of free-living amoeba and were predominated by either L. drozanskii or L. lytica, by both L. bozemanii and L. longbeachae, or by a not-yet-described group named OTU 4. The Legionella-growth- positive samples contained higher ATP levels (>980 pM) than the growth-negative samples (<160 pM) , suggesting that ATP content would be a good indicator of the presence of viable but nonculturable Legionella populations able to grow with amoeba.</p>","PeriodicalId":8777,"journal":{"name":"Biocontrol science","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4265/bio.24.39","citationCount":"3","resultStr":"{\"title\":\"Phylogenetic Characterization of Viable but-not-yet Cultured Legionella Groups Grown in Amoebic Cocultures: A Case Study using Various Cooling Tower Water Samples.\",\"authors\":\"Hiroaki Inoue,&nbsp;Kunio Agata,&nbsp;Hiroyuki Ohta\",\"doi\":\"10.4265/bio.24.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p> Legionella spp. exist naturally in association with amoeba in water environments and are known to be the etiological agent of a severe form of pneumonia. To detect diverse Legionella populations in cooling tower water systems, amoebic coculturing was performed for 15 water samples obtained from five different kinds of facilities in six geographically different locations. The growth of Legionella in coculture with Acanthamoeba sp. cells was monitored by quantitative PCR targeting Legionella-specific 16S rRNA genes. Seven out of the 15 samples were positive for Legionella growth and subjected to clone library analysis. A total of 333 clones were classified into 14 operational taxonomic units composed of seven known species and seven previously undescribed groups. Four of the seven Legionella-growth-positive samples harbored detectable levels of free-living amoeba and were predominated by either L. drozanskii or L. lytica, by both L. bozemanii and L. longbeachae, or by a not-yet-described group named OTU 4. The Legionella-growth- positive samples contained higher ATP levels (>980 pM) than the growth-negative samples (<160 pM) , suggesting that ATP content would be a good indicator of the presence of viable but nonculturable Legionella populations able to grow with amoeba.</p>\",\"PeriodicalId\":8777,\"journal\":{\"name\":\"Biocontrol science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4265/bio.24.39\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocontrol science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.4265/bio.24.39\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocontrol science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4265/bio.24.39","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

军团菌与阿米巴原虫自然存在于水环境中,是一种严重肺炎的病原。为了检测冷却塔水系统中军团菌的多样性,对从6个地理位置不同的5种不同设施获得的15个水样进行了阿米巴共培养。采用针对军团菌特异性16S rRNA基因的定量PCR检测军团菌与棘阿米巴细胞共培养的生长情况。15份样品中有7份军团菌生长阳性,并进行克隆文库分析。共有333个克隆被划分为14个可操作的分类单位,包括7个已知种和7个以前未描述的类群。在7个军团菌生长阳性的样本中,有4个样本含有可检测到的自由生活的阿米巴原虫,主要是洛赞氏乳杆菌或溶菌乳杆菌,波兹曼乳杆菌和隆滩乳杆菌,或者是一种尚未被描述的名为OTU 4的群体。军团菌生长阳性样品的ATP水平(>980 pM)高于生长阴性样品(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phylogenetic Characterization of Viable but-not-yet Cultured Legionella Groups Grown in Amoebic Cocultures: A Case Study using Various Cooling Tower Water Samples.

 Legionella spp. exist naturally in association with amoeba in water environments and are known to be the etiological agent of a severe form of pneumonia. To detect diverse Legionella populations in cooling tower water systems, amoebic coculturing was performed for 15 water samples obtained from five different kinds of facilities in six geographically different locations. The growth of Legionella in coculture with Acanthamoeba sp. cells was monitored by quantitative PCR targeting Legionella-specific 16S rRNA genes. Seven out of the 15 samples were positive for Legionella growth and subjected to clone library analysis. A total of 333 clones were classified into 14 operational taxonomic units composed of seven known species and seven previously undescribed groups. Four of the seven Legionella-growth-positive samples harbored detectable levels of free-living amoeba and were predominated by either L. drozanskii or L. lytica, by both L. bozemanii and L. longbeachae, or by a not-yet-described group named OTU 4. The Legionella-growth- positive samples contained higher ATP levels (>980 pM) than the growth-negative samples (<160 pM) , suggesting that ATP content would be a good indicator of the presence of viable but nonculturable Legionella populations able to grow with amoeba.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biocontrol science
Biocontrol science BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
2.60
自引率
8.30%
发文量
21
审稿时长
>12 weeks
期刊介绍: The Biocontrol Science provides a medium for the publication of original articles, concise notes, and review articles on all aspects of science and technology of biocontrol.
期刊最新文献
Inactivation of SARS-CoV-2 by Commercially Available Disinfectants and Cleaners. Remote Bactericidal Effect of Anatase TiO2 Photocatalytic Nanoparticles Annealed with Low-Temperature O2 Plasma. Simple and Rapid Detection of ESBL blaSHV gene from an Urban River in Tokyo by Loop-Mediated Isothermal Amplification. Use of ATP Bioluminescence Assay to Evaluate Oral Streptococci. The Effectiveness of Neutral Electrolyzed Water for Decontaminating the Spray Nozzles of Electric Tankless and Tank-Type Warm-Water Bidet Toilet Seats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1