{"title":"基于phic31的果蝇荧光蛋白标记载体的模块化工具集。","authors":"Jun Luo, Pingping Shen, Jiong Chen","doi":"10.1080/19336934.2019.1595999","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>Drosophila</i> transgenic technology and fluorescent protein fusions are powerful tools to analyze protein expression patterns, subcellular localization and protein dynamics. Recently, the <i>Drosophila</i> transgenic technology has been improved by the highly efficient phiC31 site-specific integration system. Many new and improved fluorescent proteins with desirable advantages have been developed. However, the phiC31 system and the newly developed fluorescent proteins have not been systematically applied in <i>Drosophila</i> transgenic vectors. Here, we have constructed a modular toolset of C-terminal fluorescent protein fusion vectors based on phiC31 site-specific integration system for the generation of transgenic <i>Drosophila</i> lines. These cloning vectors contain a variety of fluorescent tags, including blue, cyan, green or red fluorescent proteins, photoactivatable or photoswitchable fluorescent proteins, fluorescent timers, photosensitizers and bimolecular fluorescence complementation tags. These vectors provide a range of transcriptional regulation options including UAST, UASP, UASC, LexAop, QUAS, Ubi, αTub67C and αTub84B promoters, and two screening marker options including <i>white</i> and <i>vermilion</i> gene. The vectors have been tested <i>in vivo</i> and can produce fluorescent chimeric proteins that are functional.</p>","PeriodicalId":12128,"journal":{"name":"Fly","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336934.2019.1595999","citationCount":"3","resultStr":"{\"title\":\"A modular toolset of phiC31-based fluorescent protein tagging vectors for <i>Drosophila</i>.\",\"authors\":\"Jun Luo, Pingping Shen, Jiong Chen\",\"doi\":\"10.1080/19336934.2019.1595999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>Drosophila</i> transgenic technology and fluorescent protein fusions are powerful tools to analyze protein expression patterns, subcellular localization and protein dynamics. Recently, the <i>Drosophila</i> transgenic technology has been improved by the highly efficient phiC31 site-specific integration system. Many new and improved fluorescent proteins with desirable advantages have been developed. However, the phiC31 system and the newly developed fluorescent proteins have not been systematically applied in <i>Drosophila</i> transgenic vectors. Here, we have constructed a modular toolset of C-terminal fluorescent protein fusion vectors based on phiC31 site-specific integration system for the generation of transgenic <i>Drosophila</i> lines. These cloning vectors contain a variety of fluorescent tags, including blue, cyan, green or red fluorescent proteins, photoactivatable or photoswitchable fluorescent proteins, fluorescent timers, photosensitizers and bimolecular fluorescence complementation tags. These vectors provide a range of transcriptional regulation options including UAST, UASP, UASC, LexAop, QUAS, Ubi, αTub67C and αTub84B promoters, and two screening marker options including <i>white</i> and <i>vermilion</i> gene. The vectors have been tested <i>in vivo</i> and can produce fluorescent chimeric proteins that are functional.</p>\",\"PeriodicalId\":12128,\"journal\":{\"name\":\"Fly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19336934.2019.1595999\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fly\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19336934.2019.1595999\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fly","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336934.2019.1595999","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/3/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A modular toolset of phiC31-based fluorescent protein tagging vectors for Drosophila.
The Drosophila transgenic technology and fluorescent protein fusions are powerful tools to analyze protein expression patterns, subcellular localization and protein dynamics. Recently, the Drosophila transgenic technology has been improved by the highly efficient phiC31 site-specific integration system. Many new and improved fluorescent proteins with desirable advantages have been developed. However, the phiC31 system and the newly developed fluorescent proteins have not been systematically applied in Drosophila transgenic vectors. Here, we have constructed a modular toolset of C-terminal fluorescent protein fusion vectors based on phiC31 site-specific integration system for the generation of transgenic Drosophila lines. These cloning vectors contain a variety of fluorescent tags, including blue, cyan, green or red fluorescent proteins, photoactivatable or photoswitchable fluorescent proteins, fluorescent timers, photosensitizers and bimolecular fluorescence complementation tags. These vectors provide a range of transcriptional regulation options including UAST, UASP, UASC, LexAop, QUAS, Ubi, αTub67C and αTub84B promoters, and two screening marker options including white and vermilion gene. The vectors have been tested in vivo and can produce fluorescent chimeric proteins that are functional.
期刊介绍:
Fly is the first international peer-reviewed journal to focus on Drosophila research. Fly covers a broad range of biological sub-disciplines, ranging from developmental biology and organogenesis to sensory neurobiology, circadian rhythm and learning and memory, to sex determination, evolutionary biology and speciation. We strive to become the “to go” resource for every researcher working with Drosophila by providing a forum where the specific interests of the Drosophila community can be discussed. With the advance of molecular technologies that enable researchers to manipulate genes and their functions in many other organisms, Fly is now also publishing papers that use other insect model systems used to investigate important biological questions.
Fly offers a variety of papers, including Original Research Articles, Methods and Technical Advances, Brief Communications, Reviews and Meeting Reports. In addition, Fly also features two unconventional types of contributions, Counterpoints and Extra View articles. Counterpoints are opinion pieces that critically discuss controversial papers questioning current paradigms, whether justified or not. Extra View articles, which generally are solicited by Fly editors, provide authors of important forthcoming papers published elsewhere an opportunity to expand on their original findings and discuss the broader impact of their discovery. Extra View authors are strongly encouraged to complement their published observations with additional data not included in the original paper or acquired subsequently.