改进了多重插补中缺失信息部分的估计方法。

IF 0.1 Q4 MATHEMATICS Cogent mathematics & statistics Pub Date : 2018-01-01 Epub Date: 2018-11-23 DOI:10.1080/25742558.2018.1551504
Qiyuan Pan, Rong Wei
{"title":"改进了多重插补中缺失信息部分的估计方法。","authors":"Qiyuan Pan,&nbsp;Rong Wei","doi":"10.1080/25742558.2018.1551504","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple imputation (MI) has become the most popular approach in handling missing data. Closely associated with MI, the fraction of missing information (FMI) is an important parameter for diagnosing the impact of missing data. Currently γ <sub><i>m</i></sub> , the sample value of FMI estimated from MI of a limited <i>m</i>, is used as the estimate of γ<sub>0</sub>, the population value of FMI, where <i>m</i> is the number of imputations of the MI. This FMI estimation method, however, has never been adequately justified and evaluated. In this paper, we quantitatively demonstrated that <i>E</i>(γ <sub><i>m</i></sub> ) decreases with the increase of <i>m</i> so that <i>E</i>(γ <sub><i>m</i></sub> ) > γ<sub>0</sub> for any finite <i>m</i>. As a result <i>γ</i> <sub><i>m</i></sub> would inevitably overestimate γ<sub>0</sub>. Three improved FMI estimation methods were proposed. The major conclusions were substantiated by the results of the MI trials using the data of the 2012 Physician Workflow Mail Survey of the National Ambulatory Medical Care Survey, USA.</p>","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":"5 ","pages":"1551504"},"PeriodicalIF":0.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25742558.2018.1551504","citationCount":"4","resultStr":"{\"title\":\"Improved methods for estimating fraction of missing information in multiple imputation.\",\"authors\":\"Qiyuan Pan,&nbsp;Rong Wei\",\"doi\":\"10.1080/25742558.2018.1551504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple imputation (MI) has become the most popular approach in handling missing data. Closely associated with MI, the fraction of missing information (FMI) is an important parameter for diagnosing the impact of missing data. Currently γ <sub><i>m</i></sub> , the sample value of FMI estimated from MI of a limited <i>m</i>, is used as the estimate of γ<sub>0</sub>, the population value of FMI, where <i>m</i> is the number of imputations of the MI. This FMI estimation method, however, has never been adequately justified and evaluated. In this paper, we quantitatively demonstrated that <i>E</i>(γ <sub><i>m</i></sub> ) decreases with the increase of <i>m</i> so that <i>E</i>(γ <sub><i>m</i></sub> ) > γ<sub>0</sub> for any finite <i>m</i>. As a result <i>γ</i> <sub><i>m</i></sub> would inevitably overestimate γ<sub>0</sub>. Three improved FMI estimation methods were proposed. The major conclusions were substantiated by the results of the MI trials using the data of the 2012 Physician Workflow Mail Survey of the National Ambulatory Medical Care Survey, USA.</p>\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":\"5 \",\"pages\":\"1551504\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25742558.2018.1551504\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25742558.2018.1551504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/11/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25742558.2018.1551504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/11/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

多重插补(MI)已成为处理缺失数据最流行的方法。与MI密切相关的是,缺失信息的分数(FMI)是诊断缺失数据影响的重要参数。目前,根据有限m的MI估计的FMI样本值γm被用作FMI总体值γ0的估计值,其中m是MI的输入次数。然而,这种FMI估计方法从未得到充分的证明和评估。在本文中,我们定量地证明了E(γm)随着m的增加而减小,因此对于任何有限的m,E(γm)>γ0。因此,γm不可避免地会高估γ0。提出了三种改进的FMI估计方法。MI试验的结果证实了主要结论,该试验使用了美国国家门诊医疗调查的2012年医师工作流程邮件调查的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved methods for estimating fraction of missing information in multiple imputation.

Multiple imputation (MI) has become the most popular approach in handling missing data. Closely associated with MI, the fraction of missing information (FMI) is an important parameter for diagnosing the impact of missing data. Currently γ m , the sample value of FMI estimated from MI of a limited m, is used as the estimate of γ0, the population value of FMI, where m is the number of imputations of the MI. This FMI estimation method, however, has never been adequately justified and evaluated. In this paper, we quantitatively demonstrated that Em ) decreases with the increase of m so that Em ) > γ0 for any finite m. As a result γ m would inevitably overestimate γ0. Three improved FMI estimation methods were proposed. The major conclusions were substantiated by the results of the MI trials using the data of the 2012 Physician Workflow Mail Survey of the National Ambulatory Medical Care Survey, USA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
On roman domination number of functigraph and its complement Weakly compatible mappings with respect to a generalized c-distance and common fixed point results On W-contractions of Jungck-Ćirić-Wardowski-type in metric spaces Some compactness results by elliptic operators Yamabe solitons on 3-dimensional cosymplectic manifolds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1