{"title":"罗望子籽多糖透明质酸配方治疗关节炎的流变性能及疗效。","authors":"Won Ho Yoon, Keyong Ho Lee","doi":"10.3233/BIR-190208","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tamarind seed polysaccharide (TSP) is used as a texturizing agent and a thickener in food and pharmaceutical products. There are no publications describing the addition of TSP to intra-articular injection formulations for arthritis.</p><p><strong>Objective: </strong>The purpose of this study was to investigate the rheology and efficacy of the formulation of TSP with hyaluronic acid (HA) as a new material for injection for arthritis.</p><p><strong>Methods: </strong>We investigated the viscoelastic properties of formulations of HA and TSP as potential lubricants for arthritis, and tested the improvement of right/left paw weight distribution in monosodium iodoacetate-induced arthritis in the rat.</p><p><strong>Results: </strong>HA formulations with 3% and 4% TSP showed improved rheological characteristics and were protected against changes induced by heat sterilization. Addition of TSP also reduced pain in the arthritis model, as evidenced by normalization of the distribution of paw weight.</p><p><strong>Conclusions: </strong>TSP is a potential material as a substitute for HA or in combination with HA for intra-articular injection for arthritis.</p>","PeriodicalId":9167,"journal":{"name":"Biorheology","volume":"56 1","pages":"31-38"},"PeriodicalIF":1.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BIR-190208","citationCount":"6","resultStr":"{\"title\":\"Rheological properties and efficacy of the formulation of hyaluronic acid with tamarind seed polysaccharide for arthritis.\",\"authors\":\"Won Ho Yoon, Keyong Ho Lee\",\"doi\":\"10.3233/BIR-190208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Tamarind seed polysaccharide (TSP) is used as a texturizing agent and a thickener in food and pharmaceutical products. There are no publications describing the addition of TSP to intra-articular injection formulations for arthritis.</p><p><strong>Objective: </strong>The purpose of this study was to investigate the rheology and efficacy of the formulation of TSP with hyaluronic acid (HA) as a new material for injection for arthritis.</p><p><strong>Methods: </strong>We investigated the viscoelastic properties of formulations of HA and TSP as potential lubricants for arthritis, and tested the improvement of right/left paw weight distribution in monosodium iodoacetate-induced arthritis in the rat.</p><p><strong>Results: </strong>HA formulations with 3% and 4% TSP showed improved rheological characteristics and were protected against changes induced by heat sterilization. Addition of TSP also reduced pain in the arthritis model, as evidenced by normalization of the distribution of paw weight.</p><p><strong>Conclusions: </strong>TSP is a potential material as a substitute for HA or in combination with HA for intra-articular injection for arthritis.</p>\",\"PeriodicalId\":9167,\"journal\":{\"name\":\"Biorheology\",\"volume\":\"56 1\",\"pages\":\"31-38\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/BIR-190208\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biorheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/BIR-190208\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biorheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/BIR-190208","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Rheological properties and efficacy of the formulation of hyaluronic acid with tamarind seed polysaccharide for arthritis.
Background: Tamarind seed polysaccharide (TSP) is used as a texturizing agent and a thickener in food and pharmaceutical products. There are no publications describing the addition of TSP to intra-articular injection formulations for arthritis.
Objective: The purpose of this study was to investigate the rheology and efficacy of the formulation of TSP with hyaluronic acid (HA) as a new material for injection for arthritis.
Methods: We investigated the viscoelastic properties of formulations of HA and TSP as potential lubricants for arthritis, and tested the improvement of right/left paw weight distribution in monosodium iodoacetate-induced arthritis in the rat.
Results: HA formulations with 3% and 4% TSP showed improved rheological characteristics and were protected against changes induced by heat sterilization. Addition of TSP also reduced pain in the arthritis model, as evidenced by normalization of the distribution of paw weight.
Conclusions: TSP is a potential material as a substitute for HA or in combination with HA for intra-articular injection for arthritis.
期刊介绍:
Biorheology is an international interdisciplinary journal that publishes research on the deformation and flow properties of biological systems or materials. It is the aim of the editors and publishers of Biorheology to bring together contributions from those working in various fields of biorheological research from all over the world. A diverse editorial board with broad international representation provides guidance and expertise in wide-ranging applications of rheological methods to biological systems and materials.
The scope of papers solicited by Biorheology extends to systems at different levels of organization that have never been studied before, or, if studied previously, have either never been analyzed in terms of their rheological properties or have not been studied from the point of view of the rheological matching between their structural and functional properties. This biorheological approach applies in particular to molecular studies where changes of physical properties and conformation are investigated without reference to how the process actually takes place, how the forces generated are matched to the properties of the structures and environment concerned, proper time scales, or what structures or strength of structures are required.