Rocco Cancelliere, Giuseppina Rea, Leonardo Severini, Luciana Cerri, Gabriella Leo, Elisa Paialunga, Pietro Mantegazza, Claudia Mazzuca and Laura Micheli
{"title":"通过开发可替代的低环境足迹传感器,扩大塑料和生物炭材料的循环性","authors":"Rocco Cancelliere, Giuseppina Rea, Leonardo Severini, Luciana Cerri, Gabriella Leo, Elisa Paialunga, Pietro Mantegazza, Claudia Mazzuca and Laura Micheli","doi":"10.1039/D3GC01103H","DOIUrl":null,"url":null,"abstract":"<p >Flexible screen-printing technology combined with the use of a nano/material coating for improving electrode functionalities boosted the manufacturing of highly sensitive electrochemical sensors addressing the need for fast and easy-to-handle tests in different application fields. However, due to the large-scale production and disposable and single-use nature of these devices, their environmental footprint should be taken into careful consideration. Herein, the innovative reuse of post-consumer polyethene terephthalate (PET) plastics as an alternative substrate coupled with biochar as an environmentally friendly and cost-effective modifier is described as a sustainable alternative for the production of robust electrochemical sensors. The good printability of reused plastics with graphite inks despite the chemical heterogeneity, different crystallinity, and surface roughness was demonstrated using atomic force microscopy and attenuated total reflection Fourier transform infrared spectroscopy. Functionalization with brewers’ spent grain biochar enabled the fabrication of highly performing electrochemical sensors for nitrite detection in water having a limit of detection and a limit of quantification of 3.3 nM and 10.3 nM, respectively, with a linear range spanning from 0.01 to 500 μM, and good reproducibility (RSD% 8%). The innovative intervention of the biochar-multilayer system markedly enhanced the electron transfer process at the electrode interface while simultaneously serving as an absorptive material for the investigated analyte. This work lays a foundation for repurposing end-of-life plastics for the electronics industry and presents a customizable reuse strategy aimed to keep the value of plastics in the economy and reduce waste and leakage into the natural environment.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 17","pages":" 6774-6783"},"PeriodicalIF":9.3000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/gc/d3gc01103h?page=search","citationCount":"1","resultStr":"{\"title\":\"Expanding the circularity of plastic and biochar materials by developing alternative low environmental footprint sensors\",\"authors\":\"Rocco Cancelliere, Giuseppina Rea, Leonardo Severini, Luciana Cerri, Gabriella Leo, Elisa Paialunga, Pietro Mantegazza, Claudia Mazzuca and Laura Micheli\",\"doi\":\"10.1039/D3GC01103H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Flexible screen-printing technology combined with the use of a nano/material coating for improving electrode functionalities boosted the manufacturing of highly sensitive electrochemical sensors addressing the need for fast and easy-to-handle tests in different application fields. However, due to the large-scale production and disposable and single-use nature of these devices, their environmental footprint should be taken into careful consideration. Herein, the innovative reuse of post-consumer polyethene terephthalate (PET) plastics as an alternative substrate coupled with biochar as an environmentally friendly and cost-effective modifier is described as a sustainable alternative for the production of robust electrochemical sensors. The good printability of reused plastics with graphite inks despite the chemical heterogeneity, different crystallinity, and surface roughness was demonstrated using atomic force microscopy and attenuated total reflection Fourier transform infrared spectroscopy. Functionalization with brewers’ spent grain biochar enabled the fabrication of highly performing electrochemical sensors for nitrite detection in water having a limit of detection and a limit of quantification of 3.3 nM and 10.3 nM, respectively, with a linear range spanning from 0.01 to 500 μM, and good reproducibility (RSD% 8%). The innovative intervention of the biochar-multilayer system markedly enhanced the electron transfer process at the electrode interface while simultaneously serving as an absorptive material for the investigated analyte. This work lays a foundation for repurposing end-of-life plastics for the electronics industry and presents a customizable reuse strategy aimed to keep the value of plastics in the economy and reduce waste and leakage into the natural environment.</p>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\" 17\",\"pages\":\" 6774-6783\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2023/gc/d3gc01103h?page=search\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/gc/d3gc01103h\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/gc/d3gc01103h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Expanding the circularity of plastic and biochar materials by developing alternative low environmental footprint sensors
Flexible screen-printing technology combined with the use of a nano/material coating for improving electrode functionalities boosted the manufacturing of highly sensitive electrochemical sensors addressing the need for fast and easy-to-handle tests in different application fields. However, due to the large-scale production and disposable and single-use nature of these devices, their environmental footprint should be taken into careful consideration. Herein, the innovative reuse of post-consumer polyethene terephthalate (PET) plastics as an alternative substrate coupled with biochar as an environmentally friendly and cost-effective modifier is described as a sustainable alternative for the production of robust electrochemical sensors. The good printability of reused plastics with graphite inks despite the chemical heterogeneity, different crystallinity, and surface roughness was demonstrated using atomic force microscopy and attenuated total reflection Fourier transform infrared spectroscopy. Functionalization with brewers’ spent grain biochar enabled the fabrication of highly performing electrochemical sensors for nitrite detection in water having a limit of detection and a limit of quantification of 3.3 nM and 10.3 nM, respectively, with a linear range spanning from 0.01 to 500 μM, and good reproducibility (RSD% 8%). The innovative intervention of the biochar-multilayer system markedly enhanced the electron transfer process at the electrode interface while simultaneously serving as an absorptive material for the investigated analyte. This work lays a foundation for repurposing end-of-life plastics for the electronics industry and presents a customizable reuse strategy aimed to keep the value of plastics in the economy and reduce waste and leakage into the natural environment.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.