Steven Q. Irvine , Katherine B. McNulty , Evelyn M. Siler , Rose E. Jacobson
{"title":"高温对海鞘发育沟通化的限制","authors":"Steven Q. Irvine , Katherine B. McNulty , Evelyn M. Siler , Rose E. Jacobson","doi":"10.1016/j.mod.2019.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>The normal embryogenesis of marine animals is typically confined to a species-specific range of temperatures. Within that temperature range development results in a consistent, or canalized, phenotype, whereas above and below the range abnormal phenotypes are produced. This study reveals a high temperature threshold, occurring over a 1–2 °C range, for normal embryonic development in <em>C. intestinalis</em>. Above that threshold the prevalence of morphological abnormalities increases significantly, beginning with cleavage and gastrula stages, and becoming more pronounced as embryogenesis proceeds. However, even in highly morphologically abnormal temperature disrupted (TD) embryos, muscle, endoderm, notochord, epidermis, and sensory pigment cells are recognizable, as evidenced by histochemical markers or morphology. On the other hand, morphogenesis of the notochord and other structures is dependent on precise cell movement and shape changes after the gastrula stage, which are disrupted above the high temperature threshold. These findings suggest that morphogenetic processes may be more sensitive to high temperature than cell type specification events. They also point to avenues for investigation of the limiting factors to developmental canalization in marine invertebrates.</p></div>","PeriodicalId":49844,"journal":{"name":"Mechanisms of Development","volume":"157 ","pages":"Pages 10-21"},"PeriodicalIF":2.6000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mod.2019.04.002","citationCount":"5","resultStr":"{\"title\":\"High temperature limits on developmental canalization in the ascidian Ciona intestinalis\",\"authors\":\"Steven Q. Irvine , Katherine B. McNulty , Evelyn M. Siler , Rose E. Jacobson\",\"doi\":\"10.1016/j.mod.2019.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The normal embryogenesis of marine animals is typically confined to a species-specific range of temperatures. Within that temperature range development results in a consistent, or canalized, phenotype, whereas above and below the range abnormal phenotypes are produced. This study reveals a high temperature threshold, occurring over a 1–2 °C range, for normal embryonic development in <em>C. intestinalis</em>. Above that threshold the prevalence of morphological abnormalities increases significantly, beginning with cleavage and gastrula stages, and becoming more pronounced as embryogenesis proceeds. However, even in highly morphologically abnormal temperature disrupted (TD) embryos, muscle, endoderm, notochord, epidermis, and sensory pigment cells are recognizable, as evidenced by histochemical markers or morphology. On the other hand, morphogenesis of the notochord and other structures is dependent on precise cell movement and shape changes after the gastrula stage, which are disrupted above the high temperature threshold. These findings suggest that morphogenetic processes may be more sensitive to high temperature than cell type specification events. They also point to avenues for investigation of the limiting factors to developmental canalization in marine invertebrates.</p></div>\",\"PeriodicalId\":49844,\"journal\":{\"name\":\"Mechanisms of Development\",\"volume\":\"157 \",\"pages\":\"Pages 10-21\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mod.2019.04.002\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanisms of Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925477319300073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanisms of Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925477319300073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
High temperature limits on developmental canalization in the ascidian Ciona intestinalis
The normal embryogenesis of marine animals is typically confined to a species-specific range of temperatures. Within that temperature range development results in a consistent, or canalized, phenotype, whereas above and below the range abnormal phenotypes are produced. This study reveals a high temperature threshold, occurring over a 1–2 °C range, for normal embryonic development in C. intestinalis. Above that threshold the prevalence of morphological abnormalities increases significantly, beginning with cleavage and gastrula stages, and becoming more pronounced as embryogenesis proceeds. However, even in highly morphologically abnormal temperature disrupted (TD) embryos, muscle, endoderm, notochord, epidermis, and sensory pigment cells are recognizable, as evidenced by histochemical markers or morphology. On the other hand, morphogenesis of the notochord and other structures is dependent on precise cell movement and shape changes after the gastrula stage, which are disrupted above the high temperature threshold. These findings suggest that morphogenetic processes may be more sensitive to high temperature than cell type specification events. They also point to avenues for investigation of the limiting factors to developmental canalization in marine invertebrates.
期刊介绍:
Mechanisms of Development is an international journal covering the areas of cell biology and developmental biology. In addition to publishing work at the interphase of these two disciplines, we also publish work that is purely cell biology as well as classical developmental biology.
Mechanisms of Development will consider papers in any area of cell biology or developmental biology, in any model system like animals and plants, using a variety of approaches, such as cellular, biomechanical, molecular, quantitative, computational and theoretical biology.
Areas of particular interest include:
Cell and tissue morphogenesis
Cell adhesion and migration
Cell shape and polarity
Biomechanics
Theoretical modelling of cell and developmental biology
Quantitative biology
Stem cell biology
Cell differentiation
Cell proliferation and cell death
Evo-Devo
Membrane traffic
Metabolic regulation
Organ and organoid development
Regeneration
Mechanisms of Development does not publish descriptive studies of gene expression patterns and molecular screens; for submission of such studies see Gene Expression Patterns.