药物及其制剂的多组分光谱分析。

Q1 Pharmacology, Toxicology and Pharmaceutics Profiles of drug substances, excipients, and related methodology Pub Date : 2019-01-01 Epub Date: 2018-12-21 DOI:10.1016/bs.podrm.2018.11.002
Iqbal Ahmad, Muhammad Ali Sheraz, Sofia Ahmed, Zubair Anwar
{"title":"药物及其制剂的多组分光谱分析。","authors":"Iqbal Ahmad,&nbsp;Muhammad Ali Sheraz,&nbsp;Sofia Ahmed,&nbsp;Zubair Anwar","doi":"10.1016/bs.podrm.2018.11.002","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmaceutical preparations may contain a single ingredient or multi-ingredients as well as excipients. In multicomponent systems, specific analytical methods are required to determine the concentrations of individual components in the presence of interfering substances. Ultraviolet and visible spectrometric methods have widely been developed for the analysis of drugs in mixtures and pharmaceutical preparations. These methods are based on ultraviolet and visible multicomponent analysis and chemometrics (multivariate data analysis). The commonly used chemometric methods include principal component analysis (PCA); regression involving classical least squares (CLS), partial least squares (PLS), inverse least squares (ILS), principal component regression (PCR), multiple linear regression (MLR), artificial neural networks (ANNs); soft independent modeling of class anthology (SIMCA), PLS-discriminant analysis (DA); and functional data analysis (FDA). In this chapter, the applications of multicomponent ultraviolet and visible, derivative, infrared and mass spectrometric and spectrofluorimetric methods to the analysis of multi-ingredient pharmaceutical preparations, biological samples and the kinetics of drug degradation have been reviewed. Chemometric methods provide an efficient solution to calibration problems in the analysis of spectral data for the simultaneous determination of drugs in multicomponent systems. These methods facilitate the assessment of product quality and enhance the efficiency of quality control systems.</p>","PeriodicalId":20802,"journal":{"name":"Profiles of drug substances, excipients, and related methodology","volume":"44 ","pages":"379-413"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.podrm.2018.11.002","citationCount":"3","resultStr":"{\"title\":\"Multicomponent spectrometric analysis of drugs and their preparations.\",\"authors\":\"Iqbal Ahmad,&nbsp;Muhammad Ali Sheraz,&nbsp;Sofia Ahmed,&nbsp;Zubair Anwar\",\"doi\":\"10.1016/bs.podrm.2018.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pharmaceutical preparations may contain a single ingredient or multi-ingredients as well as excipients. In multicomponent systems, specific analytical methods are required to determine the concentrations of individual components in the presence of interfering substances. Ultraviolet and visible spectrometric methods have widely been developed for the analysis of drugs in mixtures and pharmaceutical preparations. These methods are based on ultraviolet and visible multicomponent analysis and chemometrics (multivariate data analysis). The commonly used chemometric methods include principal component analysis (PCA); regression involving classical least squares (CLS), partial least squares (PLS), inverse least squares (ILS), principal component regression (PCR), multiple linear regression (MLR), artificial neural networks (ANNs); soft independent modeling of class anthology (SIMCA), PLS-discriminant analysis (DA); and functional data analysis (FDA). In this chapter, the applications of multicomponent ultraviolet and visible, derivative, infrared and mass spectrometric and spectrofluorimetric methods to the analysis of multi-ingredient pharmaceutical preparations, biological samples and the kinetics of drug degradation have been reviewed. Chemometric methods provide an efficient solution to calibration problems in the analysis of spectral data for the simultaneous determination of drugs in multicomponent systems. These methods facilitate the assessment of product quality and enhance the efficiency of quality control systems.</p>\",\"PeriodicalId\":20802,\"journal\":{\"name\":\"Profiles of drug substances, excipients, and related methodology\",\"volume\":\"44 \",\"pages\":\"379-413\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/bs.podrm.2018.11.002\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Profiles of drug substances, excipients, and related methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.podrm.2018.11.002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/12/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Profiles of drug substances, excipients, and related methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.podrm.2018.11.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/12/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 3

摘要

药物制剂可以含有单一成分或多种成分以及赋形剂。在多组分系统中,需要特定的分析方法来确定存在干扰物质的单个组分的浓度。紫外光谱法和可见光谱法已广泛应用于混合物和药物制剂中的药物分析。这些方法是基于紫外和可见多组分分析和化学计量学(多元数据分析)。常用的化学计量学方法包括主成分分析(PCA);回归包括经典最小二乘(CLS)、偏最小二乘(PLS)、逆最小二乘(ILS)、主成分回归(PCR)、多元线性回归(MLR)、人工神经网络(ANNs);类集软独立建模(SIMCA)、pls -判别分析(DA);功能数据分析(FDA)。本章综述了多组分紫外、可见、衍生、红外、质谱和荧光光谱分析方法在多组分药物制剂、生物样品分析和药物降解动力学中的应用。化学计量学方法为多组分体系中药物同时测定的光谱数据分析提供了一种有效的校正方法。这些方法有助于产品质量的评估,提高质量控制系统的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multicomponent spectrometric analysis of drugs and their preparations.

Pharmaceutical preparations may contain a single ingredient or multi-ingredients as well as excipients. In multicomponent systems, specific analytical methods are required to determine the concentrations of individual components in the presence of interfering substances. Ultraviolet and visible spectrometric methods have widely been developed for the analysis of drugs in mixtures and pharmaceutical preparations. These methods are based on ultraviolet and visible multicomponent analysis and chemometrics (multivariate data analysis). The commonly used chemometric methods include principal component analysis (PCA); regression involving classical least squares (CLS), partial least squares (PLS), inverse least squares (ILS), principal component regression (PCR), multiple linear regression (MLR), artificial neural networks (ANNs); soft independent modeling of class anthology (SIMCA), PLS-discriminant analysis (DA); and functional data analysis (FDA). In this chapter, the applications of multicomponent ultraviolet and visible, derivative, infrared and mass spectrometric and spectrofluorimetric methods to the analysis of multi-ingredient pharmaceutical preparations, biological samples and the kinetics of drug degradation have been reviewed. Chemometric methods provide an efficient solution to calibration problems in the analysis of spectral data for the simultaneous determination of drugs in multicomponent systems. These methods facilitate the assessment of product quality and enhance the efficiency of quality control systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Profiles of drug substances, excipients, and related methodology
Profiles of drug substances, excipients, and related methodology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
13.10
自引率
0.00%
发文量
4
期刊最新文献
Avanafil: A comprehensive drug profile. Deferasirox: A comprehensive drug profile. Duvelisib: A comprehensive profile. Ponatinib: A comprehensive drug profile. Regorafenib: A comprehensive drug profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1