Maruf M Hoque, Melissa A Ardizzone, Manning Sabatier, Michael R Borich, Trisha M Kesar
{"title":"较长时间的下坡跑步机行走会导致站立和行走时测量到的 H反射减弱。","authors":"Maruf M Hoque, Melissa A Ardizzone, Manning Sabatier, Michael R Borich, Trisha M Kesar","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The Hoffman-reflex (H-reflex) is an electrophysiological technique used to evaluate the excitability of the monosynaptic spinal reflex arc. In individuals with upper motor neuron lesions who show elevated spinal excitability, a depression of spinal excitability may indicate adaptive spinal plasticity. Downslope walking (DSW), an exercise intervention comprising repetitive eccentric muscle activity, has been shown to induce depression of soleus H-reflex amplitudes while seated, however, the dose-response time-course of H-reflex modulation during DSW has not been characterized. The objectives of this study were twofold: (1) to evaluate DSW-induced soleus H-reflex depression in the standing posture and during walking, and (2) to investigate the effect of walking duration (20 minutes and 40 minutes) of DSW (-15% decline) on soleus H-reflexes, (with level walking (LW) as a control intervention).</p><p><strong>Methods: </strong>Soleus H-reflexes were collected Pre, Post-20 minutes, and Post-40 minutes of walking in the standing position; and H-reflexes were also measured at 4 different time points during the terminal stance phase of walking.</p><p><strong>Results: </strong>Our results showed that soleus H-reflexes evaluated in standing showed a greater % depression after DSW compared to LW, with a statistical trend for greater depression with longer durations (40-minutes). H-reflexes measured during walking showed greater depression after 40 minutes of walking compared to 20- or 30-minutes for both DSW and LW.</p><p><strong>Conclusions: </strong>Longer duration treadmill walking (40-minutes) may induce a greater acute depressive effect on soleus H-reflex excitability compared to shorter durations (20-minutes) of treadmill walking. Future work will investigate the potential for DSW as a gait training intervention in people with upper motor neuron lesions such as multiple sclerosis and stroke.</p>","PeriodicalId":74281,"journal":{"name":"Neurology (E-Cronicon)","volume":"10 8","pages":"761-770"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6483108/pdf/nihms-991489.pdf","citationCount":"0","resultStr":"{\"title\":\"Longer Duration of Downslope Treadmill Walking Induces Depression of H-Reflexes Measured during Standing and Walking.\",\"authors\":\"Maruf M Hoque, Melissa A Ardizzone, Manning Sabatier, Michael R Borich, Trisha M Kesar\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The Hoffman-reflex (H-reflex) is an electrophysiological technique used to evaluate the excitability of the monosynaptic spinal reflex arc. In individuals with upper motor neuron lesions who show elevated spinal excitability, a depression of spinal excitability may indicate adaptive spinal plasticity. Downslope walking (DSW), an exercise intervention comprising repetitive eccentric muscle activity, has been shown to induce depression of soleus H-reflex amplitudes while seated, however, the dose-response time-course of H-reflex modulation during DSW has not been characterized. The objectives of this study were twofold: (1) to evaluate DSW-induced soleus H-reflex depression in the standing posture and during walking, and (2) to investigate the effect of walking duration (20 minutes and 40 minutes) of DSW (-15% decline) on soleus H-reflexes, (with level walking (LW) as a control intervention).</p><p><strong>Methods: </strong>Soleus H-reflexes were collected Pre, Post-20 minutes, and Post-40 minutes of walking in the standing position; and H-reflexes were also measured at 4 different time points during the terminal stance phase of walking.</p><p><strong>Results: </strong>Our results showed that soleus H-reflexes evaluated in standing showed a greater % depression after DSW compared to LW, with a statistical trend for greater depression with longer durations (40-minutes). H-reflexes measured during walking showed greater depression after 40 minutes of walking compared to 20- or 30-minutes for both DSW and LW.</p><p><strong>Conclusions: </strong>Longer duration treadmill walking (40-minutes) may induce a greater acute depressive effect on soleus H-reflex excitability compared to shorter durations (20-minutes) of treadmill walking. Future work will investigate the potential for DSW as a gait training intervention in people with upper motor neuron lesions such as multiple sclerosis and stroke.</p>\",\"PeriodicalId\":74281,\"journal\":{\"name\":\"Neurology (E-Cronicon)\",\"volume\":\"10 8\",\"pages\":\"761-770\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6483108/pdf/nihms-991489.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurology (E-Cronicon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology (E-Cronicon)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Longer Duration of Downslope Treadmill Walking Induces Depression of H-Reflexes Measured during Standing and Walking.
Objectives: The Hoffman-reflex (H-reflex) is an electrophysiological technique used to evaluate the excitability of the monosynaptic spinal reflex arc. In individuals with upper motor neuron lesions who show elevated spinal excitability, a depression of spinal excitability may indicate adaptive spinal plasticity. Downslope walking (DSW), an exercise intervention comprising repetitive eccentric muscle activity, has been shown to induce depression of soleus H-reflex amplitudes while seated, however, the dose-response time-course of H-reflex modulation during DSW has not been characterized. The objectives of this study were twofold: (1) to evaluate DSW-induced soleus H-reflex depression in the standing posture and during walking, and (2) to investigate the effect of walking duration (20 minutes and 40 minutes) of DSW (-15% decline) on soleus H-reflexes, (with level walking (LW) as a control intervention).
Methods: Soleus H-reflexes were collected Pre, Post-20 minutes, and Post-40 minutes of walking in the standing position; and H-reflexes were also measured at 4 different time points during the terminal stance phase of walking.
Results: Our results showed that soleus H-reflexes evaluated in standing showed a greater % depression after DSW compared to LW, with a statistical trend for greater depression with longer durations (40-minutes). H-reflexes measured during walking showed greater depression after 40 minutes of walking compared to 20- or 30-minutes for both DSW and LW.
Conclusions: Longer duration treadmill walking (40-minutes) may induce a greater acute depressive effect on soleus H-reflex excitability compared to shorter durations (20-minutes) of treadmill walking. Future work will investigate the potential for DSW as a gait training intervention in people with upper motor neuron lesions such as multiple sclerosis and stroke.