Jessica Schroeder, Ravi Karkar, James Fogarty, Julie A Kientz, Sean A Munson, Matthew Kay
{"title":"以患者为中心的健康自我实验贝叶斯分析提案。","authors":"Jessica Schroeder, Ravi Karkar, James Fogarty, Julie A Kientz, Sean A Munson, Matthew Kay","doi":"10.1007/s41666-018-0033-x","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of affordable sensors and apps has enabled people to monitor various health indicators via self-tracking. This trend encourages self-experimentation, a subset of self-tracking in which a person systematically explores potential causal relationships to try to answer questions about their health. Although recent research has investigated how to support the data collection necessary for self-experiments, less research has considered the best way to analyze data resulting from these self-experiments. Most tools default to using traditional frequentist methods. However, the US Agency for Healthcare Research and Quality recommends using Bayesian analysis for n-of-1 studies, arguing from a statistical perspective. To develop a complementary patient-centered perspective on the potential benefits of Bayesian analysis, this paper describes types of questions people want to answer via self-experimentation, as informed by 1) our experiences engaging with irritable bowel syndrome patients and their healthcare providers and 2) a survey investigating what questions individuals want to answer about their health and wellness. We provide examples of how those questions might be answered using 1) frequentist null hypothesis significance testing, 2) frequentist estimation, and 3) Bayesian estimation and prediction. We then provide design recommendations for analyses and visualizations that could help people answer and interpret such questions. We find the majority of the questions people want to answer with self-tracking data are better answered with Bayesian methods than with frequentist methods. Our results therefore provide patient-centered support for the use of Bayesian analysis for n-of-1 studies.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398612/pdf/41666_2018_Article_33.pdf","citationCount":"0","resultStr":"{\"title\":\"A Patient-Centered Proposal for Bayesian Analysis of Self-Experiments for Health.\",\"authors\":\"Jessica Schroeder, Ravi Karkar, James Fogarty, Julie A Kientz, Sean A Munson, Matthew Kay\",\"doi\":\"10.1007/s41666-018-0033-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rise of affordable sensors and apps has enabled people to monitor various health indicators via self-tracking. This trend encourages self-experimentation, a subset of self-tracking in which a person systematically explores potential causal relationships to try to answer questions about their health. Although recent research has investigated how to support the data collection necessary for self-experiments, less research has considered the best way to analyze data resulting from these self-experiments. Most tools default to using traditional frequentist methods. However, the US Agency for Healthcare Research and Quality recommends using Bayesian analysis for n-of-1 studies, arguing from a statistical perspective. To develop a complementary patient-centered perspective on the potential benefits of Bayesian analysis, this paper describes types of questions people want to answer via self-experimentation, as informed by 1) our experiences engaging with irritable bowel syndrome patients and their healthcare providers and 2) a survey investigating what questions individuals want to answer about their health and wellness. We provide examples of how those questions might be answered using 1) frequentist null hypothesis significance testing, 2) frequentist estimation, and 3) Bayesian estimation and prediction. We then provide design recommendations for analyses and visualizations that could help people answer and interpret such questions. We find the majority of the questions people want to answer with self-tracking data are better answered with Bayesian methods than with frequentist methods. Our results therefore provide patient-centered support for the use of Bayesian analysis for n-of-1 studies.</p>\",\"PeriodicalId\":36444,\"journal\":{\"name\":\"Journal of Healthcare Informatics Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398612/pdf/41666_2018_Article_33.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Healthcare Informatics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41666-018-0033-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/9/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-018-0033-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/9/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
A Patient-Centered Proposal for Bayesian Analysis of Self-Experiments for Health.
The rise of affordable sensors and apps has enabled people to monitor various health indicators via self-tracking. This trend encourages self-experimentation, a subset of self-tracking in which a person systematically explores potential causal relationships to try to answer questions about their health. Although recent research has investigated how to support the data collection necessary for self-experiments, less research has considered the best way to analyze data resulting from these self-experiments. Most tools default to using traditional frequentist methods. However, the US Agency for Healthcare Research and Quality recommends using Bayesian analysis for n-of-1 studies, arguing from a statistical perspective. To develop a complementary patient-centered perspective on the potential benefits of Bayesian analysis, this paper describes types of questions people want to answer via self-experimentation, as informed by 1) our experiences engaging with irritable bowel syndrome patients and their healthcare providers and 2) a survey investigating what questions individuals want to answer about their health and wellness. We provide examples of how those questions might be answered using 1) frequentist null hypothesis significance testing, 2) frequentist estimation, and 3) Bayesian estimation and prediction. We then provide design recommendations for analyses and visualizations that could help people answer and interpret such questions. We find the majority of the questions people want to answer with self-tracking data are better answered with Bayesian methods than with frequentist methods. Our results therefore provide patient-centered support for the use of Bayesian analysis for n-of-1 studies.
期刊介绍:
Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics. The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications. Topics include but are not limited to: · healthcare software architecture, framework, design, and engineering;· electronic health records· medical data mining· predictive modeling· medical information retrieval· medical natural language processing· healthcare information systems· smart health and connected health· social media analytics· mobile healthcare· medical signal processing· human factors in healthcare· usability studies in healthcare· user-interface design for medical devices and healthcare software· health service delivery· health games· security and privacy in healthcare· medical recommender system· healthcare workflow management· disease profiling and personalized treatment· visualization of medical data· intelligent medical devices and sensors· RFID solutions for healthcare· healthcare decision analytics and support systems· epidemiological surveillance systems and intervention modeling· consumer and clinician health information needs, seeking, sharing, and use· semantic Web, linked data, and ontology· collaboration technologies for healthcare· assistive and adaptive ubiquitous computing technologies· statistics and quality of medical data· healthcare delivery in developing countries· health systems modeling and simulation· computer-aided diagnosis