结合基因表达数据和先验知识,利用结构限制通过贝叶斯网络推断基因调控网络。

IF 0.9 4区 数学 Q3 Mathematics Statistical Applications in Genetics and Molecular Biology Pub Date : 2019-05-01 DOI:10.1515/sagmb-2018-0042
Luis M de Campos, Andrés Cano, Javier G Castellano, Serafín Moral
{"title":"结合基因表达数据和先验知识,利用结构限制通过贝叶斯网络推断基因调控网络。","authors":"Luis M de Campos,&nbsp;Andrés Cano,&nbsp;Javier G Castellano,&nbsp;Serafín Moral","doi":"10.1515/sagmb-2018-0042","DOIUrl":null,"url":null,"abstract":"<p><p>Gene Regulatory Networks (GRNs) are known as the most adequate instrument to provide a clear insight and understanding of the cellular systems. One of the most successful techniques to reconstruct GRNs using gene expression data is Bayesian networks (BN) which have proven to be an ideal approach for heterogeneous data integration in the learning process. Nevertheless, the incorporation of prior knowledge has been achieved by using prior beliefs or by using networks as a starting point in the search process. In this work, the utilization of different kinds of structural restrictions within algorithms for learning BNs from gene expression data is considered. These restrictions will codify prior knowledge, in such a way that a BN should satisfy them. Therefore, one aim of this work is to make a detailed review on the use of prior knowledge and gene expression data to inferring GRNs from BNs, but the major purpose in this paper is to research whether the structural learning algorithms for BNs from expression data can achieve better outcomes exploiting this prior knowledge with the use of structural restrictions. In the experimental study, it is shown that this new way to incorporate prior knowledge leads us to achieve better reverse-engineered networks.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2018-0042","citationCount":"6","resultStr":"{\"title\":\"Combining gene expression data and prior knowledge for inferring gene regulatory networks via Bayesian networks using structural restrictions.\",\"authors\":\"Luis M de Campos,&nbsp;Andrés Cano,&nbsp;Javier G Castellano,&nbsp;Serafín Moral\",\"doi\":\"10.1515/sagmb-2018-0042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene Regulatory Networks (GRNs) are known as the most adequate instrument to provide a clear insight and understanding of the cellular systems. One of the most successful techniques to reconstruct GRNs using gene expression data is Bayesian networks (BN) which have proven to be an ideal approach for heterogeneous data integration in the learning process. Nevertheless, the incorporation of prior knowledge has been achieved by using prior beliefs or by using networks as a starting point in the search process. In this work, the utilization of different kinds of structural restrictions within algorithms for learning BNs from gene expression data is considered. These restrictions will codify prior knowledge, in such a way that a BN should satisfy them. Therefore, one aim of this work is to make a detailed review on the use of prior knowledge and gene expression data to inferring GRNs from BNs, but the major purpose in this paper is to research whether the structural learning algorithms for BNs from expression data can achieve better outcomes exploiting this prior knowledge with the use of structural restrictions. In the experimental study, it is shown that this new way to incorporate prior knowledge leads us to achieve better reverse-engineered networks.</p>\",\"PeriodicalId\":49477,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2018-0042\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2018-0042\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2018-0042","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

基因调控网络(grn)被认为是提供细胞系统清晰见解和理解的最充分的工具。利用基因表达数据重构grn的最成功技术之一是贝叶斯网络(BN),它已被证明是学习过程中异构数据集成的理想方法。然而,通过使用先验信念或使用网络作为搜索过程的起点,已经实现了对先验知识的整合。在这项工作中,利用不同类型的结构限制算法从基因表达数据中学习生物神经网络。这些限制将编纂先验知识,以这样一种方式,BN应该满足它们。因此,本研究的目的之一是详细回顾使用先验知识和基因表达数据从bp中推断grn,但本文的主要目的是研究从表达数据中提取bp的结构学习算法是否可以利用这些先验知识并使用结构限制来获得更好的结果。实验研究表明,这种结合先验知识的新方法可以使我们获得更好的反向工程网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining gene expression data and prior knowledge for inferring gene regulatory networks via Bayesian networks using structural restrictions.

Gene Regulatory Networks (GRNs) are known as the most adequate instrument to provide a clear insight and understanding of the cellular systems. One of the most successful techniques to reconstruct GRNs using gene expression data is Bayesian networks (BN) which have proven to be an ideal approach for heterogeneous data integration in the learning process. Nevertheless, the incorporation of prior knowledge has been achieved by using prior beliefs or by using networks as a starting point in the search process. In this work, the utilization of different kinds of structural restrictions within algorithms for learning BNs from gene expression data is considered. These restrictions will codify prior knowledge, in such a way that a BN should satisfy them. Therefore, one aim of this work is to make a detailed review on the use of prior knowledge and gene expression data to inferring GRNs from BNs, but the major purpose in this paper is to research whether the structural learning algorithms for BNs from expression data can achieve better outcomes exploiting this prior knowledge with the use of structural restrictions. In the experimental study, it is shown that this new way to incorporate prior knowledge leads us to achieve better reverse-engineered networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
期刊最新文献
Empirically adjusted fixed-effects meta-analysis methods in genomic studies. A CNN-CBAM-BIGRU model for protein function prediction. A heavy-tailed model for analyzing miRNA-seq raw read counts. Flexible model-based non-negative matrix factorization with application to mutational signatures. Choice of baseline hazards in joint modeling of longitudinal and time-to-event cancer survival data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1